Effect of Charge Mode on Interface Wave of Copper/Steel Explosive Welding and Wave Formation Mechanism
-
摘要: 为了改善爆炸焊接质量,解决高噪低效的问题,选取Cu为复板、Q235钢为基板,采用LS-DYNA软件和光滑粒子流体动力学方法分别设计了均匀布药和梯形布药方案,研究了硝铵炸药对爆炸焊接界面波的影响。均匀布药结果显示:沿着爆轰方向碰撞压力逐渐增大;炸药量越多,碰撞压力越大,界面波波形越大。梯形布药方案中,通过改变炸药起爆端和末端的高度,设计了4种方案,结果显示:梯形布药可以消除爆炸焊接界面波不均匀现象,使界面波形尺寸基本保持一致,而且节省了炸药用量;当起爆端和末端的高度分别为67.2 mm和42.0 mm时,波形效果最好。通过研究界面波的形成过程可知,SPH法模拟的界面波形成过程与复板流侵彻机理的一致性较好,证明了复板流侵彻机理解释界面波形成过程的有效性。Abstract: In order to improve the quality of explosive welding and to solve the problem of high noise and low efficiency, Cu is selected as the flyer plate and Q235 steel is used as the base plate. The LS-DYNA software and the smoothed particle hydrodynamics (SPH) method are used to design the uniform distribution and the ladder distribution scheme, and the effect of the nitrate explosive on the explosive welding interface wave is studied. The results of the uniform distribution show that the collision pressure gradually increases along the detonation direction; the more amount of explosive, the greater the collision pressure and the higher the interface wave shape . In the ladder distribution scheme, four schemes are designed by changing the height of the initiation and the end of the explosive. The results show that the ladder distribution can eliminate the uneven phenomenon of the interface wave in the explosion welding, and keep the size of interface waveform consistent, and the amount of explosives will be saved. The waveform is best when the height of the initiation and the end of detonation is 67.2 mm and 42.0 mm, respectively. By studying the formation process of interface wave, the SPH results of formation process of interface wave simulated is in good agreement with the jet indentation mechanism, which shows the effectiveness of the jet indentation mechanism to explaining the formation process of interface wave.
-
Key words:
- explosive quantity /
- charging mode /
- ladder charge /
- interface wave
-
表 1 硝铵炸药的JWL状态方程参数
Table 1. JWL EOS parameters of ammonium nitrate explosive
ρ/(kg·m−3) D/(m·s−1) AJ/GPa BJ/GPa R1 R2 ω 800 2 800 132.75 0.423 5.3 1.2 0.21 表 2 Cu和Q235钢的Johnson-Cook模型参数
Table 2. Parameters of Johnson-Cook model of Cu and Q235 steel
Material ρ/(g·cm−3) G/GPa A/GPa B/GPa n C m Tm/K Tr/K Cu 8.96 46 0.090 0.292 0.31 0.025 1.09 1 356 294 Q235 7.83 77 0.792 0.510 0.26 0.014 1.03 1 793 294 表 3 Cu和Q235钢的Grüneisen方程参数
Table 3. Grüneisen EOS parameters of Cu and Q235 steel
Material c/(km·s−1) S1 Γ0 a Cu 3.940 1.489 2.02 0.47 Q235 4.569 1.490 2.17 0.46 表 4 均匀布药方案关键点碰撞压力
Table 4. Collision pressure of key points in uniform charge scheme
Key point Pressure/GPa Key point Pressure/GPa R1 = 1.0 R2 = 1.5 R1 = 1.0 R2 = 1.5 A1 0.581 1.602 A5 4.999 7.086 A2 1.672 2.002 A6 5.754 8.576 A3 4.507 5.289 A7 0.526 1.031 A4 4.654 6.191 表 5 梯形布药方案
Table 5. Ladder charging scheme
Scheme a/mm b/mm Ⅰ 67.2 58.8 Ⅱ 67.2 50.4 Ⅲ 67.2 42.0 Ⅳ 67.2 33.6 表 6 梯形布药方案关键点碰撞压力
Table 6. Collision pressure of key points of ladder charge scheme
Key point Pressure/GPa Scheme Ⅰ Scheme Ⅱ Scheme Ⅲ Scheme Ⅳ A1 1.738 1.158 1.694 0.351 A2 2.549 2.548 2.141 1.936 A3 3.839 3.830 3.621 2.776 A4 5.230 7.547 5.439 5.665 A5 7.890 8.330 3.413 4.537 A6 6.423 3.505 3.731 2.064 A7 0.780 0.431 0.397 0.435 -
[1] NASSIRI A, KINSEY B. Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian-Eulerian (ALE) [J]. Journal of Manufacturing Processes, 2016, 24: 376–381. doi: 10.1016/j.jmapro.2016.06.017 [2] ABE A. Numerical study of the mechanism of wavy interface generation in explosive welding [J]. JSME International Journal Series B—Fluids and Thermal Engineering, 1997, 40: 395–401. doi: 10.1299/jsmeb.40.395 [3] YUAN X, WANG W, CAO X, et al. Numerical study on the interfacial behavior of Mg/Al plate in explosive/impact welding [J]. Science & Engineering of Composite Materials, 2017, 24(6): 833–843. [4] TABBATAEE M, MAHMOUDI J. Finite element simulation of explosive welding [J]. Journal of Applied Physics, 2014, 24(3): 349–359. [5] MOUSAVI A A A, BURLEY S J, AL-HASSANI S T S. Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives [J]. International Journal of Impact Engineering, 2005, 31(6): 719–734. doi: 10.1016/j.ijimpeng.2004.03.003 [6] MOUSAVI A A A, AL-HASSANI S T S. Simulation of wave and jet formations in explosive/impact welding [C]//ASME 7th Biennial Conference on Engineering Systems Design and Analysis. Manchester, England, 2004: 265–274. [7] 王宇新, 李晓杰, 孙国, 等. 无网格MPM法三维爆炸焊接数值模拟 [J]. 计算力学学报, 2013, 30(1): 34–38. doi: 10.7511/jslx201301006WANG Y X, LI X J, SUN G, et al. Three dimensional simulation of the explosive welding by using of the MPM [J]. Chinese Journal of Computational Mechanics, 2013, 30(1): 34–38. doi: 10.7511/jslx201301006 [8] 刘江, 郑远远, 沈宗宝, 等. 基于SPH方法的爆炸焊接过程模拟 [J]. 焊接技术, 2013, 42(12): 17–20.LIU J, ZHENG Y Y, SHEN Z B, et al. Simulation of explosive welding process based on SPH method [J]. Welding Technology, 2013, 42(12): 17–20. [9] 周春华, 史长根, 蔡立艮, 等. 爆炸焊接布药工艺的研究 [J]. 焊接技术, 2002, 31(6): 17–18. doi: 10.3969/j.issn.1002-025X.2002.06.008ZHOU C H, SHI C G, CAI L G, et al. Research on dynamite-distributing technology of explosive welding [J]. Welding Technology, 2002, 31(6): 17–18. doi: 10.3969/j.issn.1002-025X.2002.06.008 [10] 董刚, 周春华, 史长根, 等. 爆炸焊接不等厚度布药工艺 [J]. 焊接, 2004(6): 35–38. doi: 10.3969/j.issn.1001-1382.2004.06.010DONG G, ZHOU C H, SHI C G, et al. Unequal thickness arranging explosive technology of explosive welding [J]. Welding, 2004(6): 35–38. doi: 10.3969/j.issn.1001-1382.2004.06.010 [11] 缪广红, 李亮, 江向阳, 等. 双面爆炸焊接的数值模拟 [J]. 高压物理学报, 2018, 32(4): 1–8. doi: 10.11858/gywlxb.20180513MIAO G H, LI L, JIANG X Y, et al. Numerical simulation of double sided explosive welding [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 1–8. doi: 10.11858/gywlxb.20180513 [12] LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives [R]. Livermore, CA, USA: Lawrance Livermore National Laboratory, 1973. [13] LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法 [M]. 韩旭, 译. 长沙: 湖南大学出版社, 2005. [14] 程国强, 李守新. 金属材料在高应变率下的热粘塑性本构模型 [J]. 弹道学报, 2004, 11(6): 18–22.CHENG G Q, LI S X. Thermal viscoplastic constitutive model of metallic materials at high strain rate [J]. Journal of Ballistics, 2004, 11(6): 18–22. [15] 张振逵, 吴绍尧. 用半圆柱法测定铜-钢爆炸焊接窗口及合理药量 [J]. 焊接学报, 1980(3): 17–30, 67.ZHANG Z K, WU S Y. Determination of explosive welding window and reasonable charge content of copper-steel by semi-cylindrical method [J]. Transactions of the China Welding Institution, 1980(3): 17–30, 67. [16] SUI G F, LI J S, SUN F, et al. 3D finite element simulation of explosive welding of three-layer plates [J]. Science China-Physics Mechanics & Astronomy, 2011, 54(5): 890–896. [17] 孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995: 356–418. [18] MOUSAVI A A A, AL-HASSANI S T S. Finite element simulation of explosively-driven plate impact with application to explosive welding [J]. Materials & Design, 2008, 29(1): 1–19. doi: 10.1016/j.matdes.2006.12.012 [19] 蔡立艮, 卢红标, 周春华, 等. 爆炸焊接布药工艺与微观结合界面形貌分析 [J]. 爆破, 2010, 27(1): 78–81. doi: 10.3963/j.issn.1001-487X.2010.01.021CAI L G, LU H B, ZHOU C H, et al. Arranging explosive technology of explosive welding and microanalysis of bonging interfaces [J]. Blasting, 2010, 27(1): 78–81. doi: 10.3963/j.issn.1001-487X.2010.01.021 [20] 王克鸿, 张德库, 张文军. 爆炸焊接技术研究进展 [J]. 机械制造与自动化, 2011, 40(2): 1–5. doi: 10.3969/j.issn.1671-5276.2011.02.001WANG K H, ZHANG D K, ZHANG W J. Research progress of explosive welding technology [J]. Mechanical Manufacturing and Automation, 2011, 40(2): 1–5. doi: 10.3969/j.issn.1671-5276.2011.02.001 [21] FINDIK F. Recent developments in explosive welding [J]. Materials & Design, 2011, 32(3): 1081–1082. [22] 袁晓丹. 铝-镁合金爆炸焊接层状复合界面形成机制及数值模拟 [D]. 太原: 太原理工大学, 2016.YUAN X D. Formation mechanism and numerical simulation of layered composite interface in explosive welding of Al-Mg alloy [D]. Taiyuan: Taiyuan University of Technology, 2016. [23] LI Y, WU Z. Microstructural characteristics and mechanical properties of 2205/AZ31B laminates fabricated by explosive welding [J]. Metals, 2017, 7(4): 125. doi: 10.3390/met7040125 [24] 郑远谋. 爆炸焊接和爆炸复合材料 [M]. 北京: 国防工业出版社, 2017: 13–14. [25] 缪广红. 蜂窝结构炸药与双面爆炸复合的研究 [D]. 合肥: 中国科学技术大学, 2015.MIAO G H. Research on honeycomb structure explosives and double sided explosive cladding [D]. Hefei: University of Science and Technology of China, 2015. [26] 王耀华. 金属板材爆炸焊接研究与实践 [M]. 北京: 国防工业出版社, 2007. [27] 缪广红, 马宏昊, 沈兆武, 等. 不锈钢-普碳钢的双面爆炸复合 [J]. 爆炸与冲击, 2015, 35(4): 536–540. doi: 10.11883/1001-1455(2015)04-0536-05MIAO G H, MA H H, SHEN Z W, et al. Double-sided explosive recombination of stainless steel and plain carbon steel [J]. Explosion and Shock Waves, 2015, 35(4): 536–540. doi: 10.11883/1001-1455(2015)04-0536-05 [28] WANG X, ZHENG Y, LIU H, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method [J]. Materials & Design, 2012, 35: 210–219. doi: 10.1016/j.matdes.2011.09.047 [29] BAHRANI A S, BLACK T J, CROSSLAND B. The mechanics of wave formation in explosive welding [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1967, 296(1445): 123–136. [30] COWAN G R, BERGMANN O R, HOLTZMAN A H. Mechanism of bond zone wave formation in explosion-clad metals [J]. Metallurgical and Materials Transactions B, 1971, 2(11): 3145–3155. doi: 10.1007/BF02814967 [31] COWAN G R, HOLTZMAN A H. Flow configurations in colliding plates: explosive bonding [J]. Journal of Applied Physics, 1963, 34(4): 928–939. doi: 10.1063/1.1729565 [32] KOWALICK J F, HAY D R. A mechanism of explosive bonding [J]. Metallurgical and Materials Transactions B, 1971, 2(7): 1953–1958. [33] REID S R, SHERIFF N H S. Prediction of the wave length of interface waves in symmetric explosive welding [J]. Journal of Mechanical Engineering Science, 1980, 18(2): 87–94. [34] GODUNOV S K, DERIBAS A A, ZABRADINA V. Hydrodynamic effect in colliding solids [J]. Computational Physics, 1970, 5: 517–539. doi: 10.1016/0021-9991(70)90078-1