不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验

周忠彬 马田 赵永刚 李继东 周涛 李鹏

周忠彬, 马田, 赵永刚, 李继东, 周涛, 李鹏. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验[J]. 高压物理学报, 2020, 34(2): 025101. doi: 10.11858/gywlxb.20190841
引用本文: 周忠彬, 马田, 赵永刚, 李继东, 周涛, 李鹏. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验[J]. 高压物理学报, 2020, 34(2): 025101. doi: 10.11858/gywlxb.20190841
ZHOU Zhongbin, MA Tian, ZHAO Yonggang, LI Jidong, ZHOU Tao, LI Peng. Comparative Experiment on Structural Damage of Supersonic Projectiles with Different Metal Materials Penetrating into Reinforced Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. doi: 10.11858/gywlxb.20190841
Citation: ZHOU Zhongbin, MA Tian, ZHAO Yonggang, LI Jidong, ZHOU Tao, LI Peng. Comparative Experiment on Structural Damage of Supersonic Projectiles with Different Metal Materials Penetrating into Reinforced Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. doi: 10.11858/gywlxb.20190841

不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验

doi: 10.11858/gywlxb.20190841
详细信息
    通讯作者:

    周忠彬(1984-),男,博士,高级工程师,主要从事战斗部总体设计及毁伤威力评估研究. E-mail: zhouzb3002@126.com

  • 中图分类号: O347.1; O385

Comparative Experiment on Structural Damage of Supersonic Projectiles with Different Metal Materials Penetrating into Reinforced Concrete Targets

  • 摘要: 设计了超声速钻地结构弹,采用203 mm口径的火炮,开展了25 kg量级弹体在1 100~1 300 m/s速度范围内侵彻钢筋混凝土靶的实验研究,应用数值仿真对弹体侵彻钢筋混凝土靶的过程进行了模拟计算。基于实验和仿真结果,对超声速侵彻条件下两种金属材料弹体的结构响应、质量损失等问题进行了分析。结果表明:在超声速侵彻钢筋混凝土靶的过程中,两种金属材料的弹体结构变形破坏形式主要为头部侵蚀和侧壁磨蚀,头部侵蚀量的大小与弹体壳体材料有关,高强度G50钢材料更适合用于1 200 m/s速度量级的超声速侵彻环境。对出现的“径缩”现象作了初步分析,并对今后工程应用的结构弹体设计提出了指导意见。

     

  • 图  实验弹结构和实物图

    Figure  1.  Schematic diagram and image of the projectile

    图  实验钢筋混凝土靶

    Figure  2.  Reinforced concrete targets used in the experiment

    图  实验布局

    Figure  3.  Experimental layout

    图  30CrMnSiNi2MoVE钢材料实验弹侵彻后靶标的破坏结果

    Figure  4.  Destruction results of targets penetrated by experimental projectile of 30CrMnSiNi2MoVE metal material

    图  G50钢材料实验弹侵彻后靶标的破坏结果

    Figure  5.  Destruction results of targets penetrated by experimental projectile of G50 metal material

    图  实验前后弹体外观比较

    Figure  6.  Appearances comparison of projectiles before and after experiment

    图  回收弹体头部侵蚀破坏

    Figure  7.  Erosion damage of the head of recycled projectile

    图  弹体模型

    Figure  8.  Simulation model of projectile

    图  侵彻能力计算结果

    Figure  9.  Calculation result of penetration capability

    图  10  过载随时间变化曲线

    Figure  10.  Overload-time curve

    图  11  壳体塑性变形

    Figure  11.  Plastic deformation of projectile’s body

    表  1  金属材料力学性能

    Table  1.   Mechanical properties of metal materials

    Materialρ/(g·cm–3σb/MPaσs/MPaKIC/(MPa·m1/2)
    30CrMnSiNi2A 7.80 1 690 1 300 86
    35CrMnSiA 7.80 1 670 1 310 57
    G50 7.76 1 740 1 440 105
    30CrMnSiNi2MoVE 7.80 1 640 1 360 112
    下载: 导出CSV

    表  2  实验回收弹体测量结果

    Table  2.   Measuring results of recycled projectile

    Projectile
    No.
    m/kgL/mmD/mmMass
    loss/%
    Length change/%Outside diameter change/%
    Before
    exp.
    After
    exp.
    Before
    exp.
    After
    exp.
    Before
    exp.
    After
    exp.
    1#20.5319.16900814.6150149.26.710.50.54
    2#20.4919.07900824.5150149.66.9 9.20.27
    3#20.5119.77900851.7150149.53.7 5.70.33
    4#20.4919.73900862.4150149.33.9 4.40.47
    下载: 导出CSV
  • [1] 刘永远, 姜正平, 张进. 钻地弹及其发展趋势 [J]. 飞航导弹, 2006(3): 34–37. doi: 10.3969/j.issn.1009-1319.2006.03.013

    LIU Y Y, JIANG Z P, ZHANG J. The earth penetrators and their development trends [J]. Winged Missiles Journal, 2006(3): 34–37. doi: 10.3969/j.issn.1009-1319.2006.03.013
    [2] LUNDEGREN R G. High-velocity penetrators: SAND94-2724C [R]. Albuquerque, New Mexico, USA: Sandia National Laboratories, 1994.
    [3] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F
    [4] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. doi: 10.1016/S0734-743X(02)00005-2
    [5] 梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. doi: 10.3321/j.issn:1001-1455.2008.01.001

    LIANG B, CHEN X W, JI Y Q, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. doi: 10.3321/j.issn:1001-1455.2008.01.001
    [6] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [7] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. doi: 10.11883/1001-1455(2010)01-0001-06

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. doi: 10.11883/1001-1455(2010)01-0001-06
    [8] 王可慧, 耿宝刚, 初哲, 等. 弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究 [J]. 高压物理学报, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010

    WANG K H, GENG B G, CHU Z, et al. Experimental studies on structural response and mass loss of high-velocity projectiles penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010
    [9] YOUNG C W. Penetration equations: SAND97-2426 [R]. Albuquerque, New Mexico, USA: Sandia National Laboratories, 1997.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  7865
  • HTML全文浏览量:  3449
  • PDF下载量:  47
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-11-04

目录

    /

    返回文章
    返回