高压下FeNiP的压缩性

贺雪菁 KAGIHiroyuki 秦善 巫翔

贺雪菁, KAGIHiroyuki, 秦善, 巫翔. 高压下FeNiP的压缩性[J]. 高压物理学报, 2019, 33(6): 060106. doi: 10.11858/gywlxb.20190837
引用本文: 贺雪菁, KAGIHiroyuki, 秦善, 巫翔. 高压下FeNiP的压缩性[J]. 高压物理学报, 2019, 33(6): 060106. doi: 10.11858/gywlxb.20190837
HE Xuejing, KAGI Hiroyuki, QIN Shan, WU Xiang. Compressibility of FeNiP under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060106. doi: 10.11858/gywlxb.20190837
Citation: HE Xuejing, KAGI Hiroyuki, QIN Shan, WU Xiang. Compressibility of FeNiP under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060106. doi: 10.11858/gywlxb.20190837

高压下FeNiP的压缩性

doi: 10.11858/gywlxb.20190837
基金项目: 国家自然科学基金(41772034);日本学术振兴会科研基金JSPS KAKENHI(JP18H05224)
详细信息
    作者简介:

    贺雪菁(1994-),女,博士研究生,主要从事高温高压晶体化学研究.E-mail: xuejinghe@pku.edu.cn

    通讯作者:

    秦 善(1962-),男,博士,教授,主要从事高温高压晶体化学研究. E-mail: sqin@pku.edu.cn

  • 中图分类号: O512.2; P691

Compressibility of FeNiP under High Pressure

  • 摘要: 利用金刚石压腔技术和原位同步辐射X射线衍射技术,对FeNiP($P\bar 62m$)的压缩性进行了实验研究。常温下,FeNiP在0~23.4 GPa压力范围内保持$P\bar 62m$结构不变。用Birch-Murnaghan状态方程对单位晶胞体积随压力的变化关系(p-V关系)进行拟合,得到:体积模量K0=153(2) GPa,体积模量微商$K'_0 $ = 5.7(2),零压下晶胞体积V0 = 101.6(1) Å3;或K0 = 167(1) GPa,$K'_0 $ = 4.0(固定值),V0 = 101.5(1) Å3。与Fe2P相比,FeNiP的体积模量更小,呈现出与Fe2P相反、与Ni2P相同的轴向压缩各向异性,据此探讨了Ni对(Fe,Ni)2P压缩性的影响。应用当前实验结果,估算了FeNiP、Fe2P、Fe3P、Fe2.15Ni0.85P和Fe3S在月球外核温压条件下的密度,通过与γ-Fe及月球外核密度的比较,得出Ni的加入会使“Fe-轻元素”体系的密度更接近月球外核密度,进一步阐释以多元合金体系(如Fe-Ni-S-P)为对象来研究行星核部物质组成更具合理性。

     

  • 图  FeNiP在Run 1(a)和Run 2(b)两次原位高压同步辐射XRD实验中部分压力条件下的衍射图谱(星号表示铼的衍射峰)

    Figure  1.  Representative synchrotron radiation XRD patterns of FeNiP at various pressures in Run 1 (a) and Run 2 (b)(The asterisks mark diffraction peaks of rhenium)

    图  FeNiP的归一化轴长(a/a0c/c0)及归一化轴长比值((c/c0)/(a/a0))随压力的变化关系(Fe2P和Ni2P的p-(c/c0)/(a/a0)数据[2324]也被列出用于比较)

    Figure  2.  Normalized axis length of FeNiP (a/a0 and c/c0) and normalized ratio of axis length ((c/c0)/(a/a0)) with the change of pressure (p-(c/c0)/(a/a0) data of Fe2P and Ni2P[2324] are plotted for comparison.)

    图  FeNiP的归一化晶胞体积随压力的变化关系(Fe2P和Ni2P的数据[23-24]也被绘出以进行比较)

    Figure  3.  Normalized unit-cell volume of FeNiP with the change of pressure (Data of Fe2P and Ni2P[23-24] are plotted for comparison.)

    图  FeNiP的欧拉应变-标准化应力(εE-FE)关系

    Figure  4.  Eularian strain-normalized stress (εE-FE) plot of the p-V data based on the B-M equation of state

    图  月球外核温压(4.8~5.0 GPa,1 800 K)条件下FeNiP、Fe2P、Fe3P、Fe2.15Ni0.85P、Fe3P和Fe3S的估算密度(γ-Fe和月球外核密度也绘出用以比较)

    Figure  5.  Calculated density of FeNiP, Fe2P, Fe3P, Fe2.15Ni0.85P, Fe3P, and Fe3S under the pressure-temperature conditions commensurate to the Moon’s outer core(4.8–5.0 GPa, 1 800 K)(Density of γ-Fe and the Moon’s outer core are plotted for comparison.)

    表  1  FeNiP在不同压力下的晶胞参数

    Table  1.   Pressure dependence of unit-cell parameters of FeNiP

    p/GPaacV3p/GPaacV3
    0.000 15.845(1)3.433(1)101.6(1) 7.9(1)5.760(1)3.379(1)97.1(1)
    1.0(1)5.829(1)3.426(1)100.8(1) 9.1(1)5.750(1)3.372(1)96.6(1)
    2.8(1)5.811(1)3.413(1) 99.8(1)10.5(1)5.737(1)3.362(1)95.8(1)
    3.3(1)5.806(1)3.410(1) 99.5(1)11.6(1)5.729(2)3.353(2)95.3(1)
    3.8(1)5.798(1)3.406(1) 99.2(1)13.5(1)5.713(1)3.346(1)94.6(1)
    4.8(1)5.790(1)3.400(1) 98.7(1)18.1(1)5.682(1)3.320(1)92.8(1)
    5.7(1)5.783(1)3.392(1) 98.2(1)20.7(1)5.660(1)3.306(1)91.7(1)
    6.6(1)5.772(1)3.385(1) 97.7(1)23.4(1)5.647(1)3.292(1)90.9(1)
     Note: Data of 1.0–9.1 GPa are from Run1, and data of 10.5–23.4 GPa are from Run 2; numbers in parentheses represent errors in the last digit.
    下载: 导出CSV

    表  2  Fe2P、Ni2P和FeNiP的B-M状态方程参数

    Table  2.   B-M EOS parameters of Fe2P, Ni2P, and FeNiP

    CompoundK0/GPa${K'_0} $V03Ref.
    Fe2P(${P\bar 62m}$)175(8)4.0(fixed)103.16(1)[23]
    Ni2P(${P\bar 62m}$)201(8)4.2(6)100.54(fixed)[24]
    FeNiP(${P\bar 62m}$)167(1)4.0(fixed)101.5(1)This study
    下载: 导出CSV

    表  3  FeNiP、Fe2P、Fe3P、Fe2.15Ni0.85P和Fe3S的高温B-M状态方程参数

    Table  3.   High-temperature B-M equation of state parameters for FeNiP, Fe2P, Fe3P, Fe2.15Ni0.85P, and Fe3S

    MaterialT0/K${V_{{0,T}_0}}$/Å3${K_{{0T}_0}}$/GPa${K'_{{0T}_0}}$${{\left( {\dfrac{{\partial {K_T}}}{{\partial T}}} \right)_p}}/({\rm{GPa}}\cdot{\rm K}^{-1})$α0/(10–5 K–1α1/(10–8 K–2
    FeNiP300 101.5 167 4.0 –3.75×10–2[54]3.0[54]2.8[54]
    Fe2P300[23]103.16[23]175[23]4.0[23]–3.75×10–2[54]3.0[54]2.8[54]
    Fe3P300[20]366.9[20] 161[20]4.0[20]–3.75×10–2[54]3.0[54]2.8[54]
    Fe2.15Ni0.85P300[21]365.8[21] 185[21]4.0[21]–3.75×10–2[54]3.0[54]2.8[54]
    Fe3S300[54]377.01[54]150[54]4.0[54]–3.75×10–2[54]3.0[54]2.8[54]
    下载: 导出CSV
  • [1] BIRCH F. Density and composition of mantle and core [J]. Journal of Geophysical Research, 1964, 69: 4377–4388. doi: 10.1029/JZ069i020p04377
    [2] DREIBUS G, WÄNKE H. Mars, a volatile-rich planet [J]. Meteoritics, 1985, 20: 367–381.
    [3] ANTONANGELI D, MORARD G, SCHMERR N C, et al. Toward a mineral physics reference model for the Moon’s core [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 3916–3919. doi: 10.1073/pnas.1417490112
    [4] MCDONOUGH W F. Treatise on geochemistry: compositional model for the Earth’s core [M]. New York: Elsevier, 2003: 547–568.
    [5] FEI Y, PREWITT C T, MAO H K, et al. Structure and density of FeS at high pressure and high temperature and the internal structure of Mars [J]. Science, 1995, 268(5219): 1892–1894. doi: 10.1126/science.268.5219.1892
    [6] STEENSTRA E S, LIN Y H, RAI N, et al. Carbon as the dominant light element in the lunar core [J]. American Mineralogist, 2017, 102(1): 92–97. doi: 10.2138/am-2017-5727
    [7] SKÁLA R, CÍSAŘOVÁ I. Crystal structure of meteoritic schreibersites: determination of absolute structure [J]. Physics and Chemistry of Minerals, 2005, 31(10): 721–732. doi: 10.1007/s00269-004-0435-6
    [8] BUSECK P R. Phosphide from metorites: barringerite, a new iron-nickel mineral [J]. Science, 1969, 165(3889): 169–171. doi: 10.1126/science.165.3889.169
    [9] BRITVIN S N, RUDASHEVSKY N S, KRIVOVICHEV S V, et al. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure [J]. American Mineralogist, 2002, 87(8/9): 1245–1249.
    [10] PRATESI G. Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite [J]. American Mineralogist, 2006, 91(2/3): 451–454.
    [11] REED S J B. Perryite in the kota-kota and south Oman enstatite chondrites [J]. Mineralogical Magazine and Journal of the Mineralogical Society, 1968, 36(282): 850–854. doi: 10.1180/minmag.1968.036.282.13
    [12] MA C, BECKETT J R, ROSSMAN G R. Discovery of a new phosphide mineral, monipite (MoNiP), in an Allende Type B1 CAI [C]//72nd Meeting of the Meteoritical Society, 2009, 44(Suppl 7): A127.
    [13] 梅清风, 杨进辉. 地球早期演化的Hf-W同位素制约 [J]. 岩石学报, 2018, 34(1): 207–216.

    MEI Q F, YANG J H. Hf-W isotopic constraints on early evolution of the Earth [J]. Acta Petrologica Sinica, 2018, 34(1): 207–216.
    [14] WOOD B J, WALTER M J, WADE J. Accretion of the Earth and segregation of its core [J]. Nature, 2006, 441(7095): 825–833. doi: 10.1038/nature04763
    [15] YIN Y, LI Z M, ZHAI S M. The phase diagram of the Fe-P binary system at 3 GPa and implications for phosphorus in the lunar core [J]. Geochimica et Cosmochimica Acta, 2019, 254: 54–66. doi: 10.1016/j.gca.2019.03.037
    [16] STEWART A J, SCHMIDT M W. Sulfur and phosphorus in the Earth’s core: the Fe-P-S system at 23 GPa [J]. Geophysical Research Letters, 2007, 34(13): L13201.
    [17] SHA L K. Whitlockite solubility in silicate melts: some insights into lunar and planetary evolution [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3217–3236. doi: 10.1016/S0016-7037(00)00420-8
    [18] STEENSTRA E S, VAN WESTRENEN W. Lunar core composition [M]//Encyclopedia of Lunar Science. Cham: Springer International Publishing, 2016: 1–6.
    [19] GU T T, FEI Y W, WU X, et al. Phase stabilities and spin transitions of Fe3(S1– xP x) at high pressure and its implications in meteorites [J]. American Mineralogist, 2016, 101(1): 205–210. doi: 10.2138/am-2016-5466
    [20] GU T T, FEI Y W, WU X, et al. High-pressure behavior of Fe3P and the role of phosphorus in planetary cores [J]. Earth and Planetary Science Letters, 2014, 390: 296–303. doi: 10.1016/j.jpgl.2014.01.019
    [21] HE X J, GUO J Z, WU X, et al. Compressibility of natural schreibersite up to 50 GPa [J]. Physics and Chemistry of Minerals, 2019, 46(1): 91–99. doi: 10.1007/s00269-018-0990-x
    [22] NISAR J, AHUJA R. Structure behavior and equation of state (EOS) of Ni2P and (Fe1– xNi x)2P (allabogdanite) from first-principles calculations [J]. Earth and Planetary Science Letters, 2010, 295(3/4): 578–582.
    [23] DERA P, LAVINA B, BORKOWSKI L A, et al. High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core [J]. Geophysical Research Letters, 2008, 35(10): L10301.
    [24] DERA P, LAVINA B, BORKOWSKI L A, et al. Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores [J]. Journal of Geophysical Research, 2009, 114(B3): B03201.
    [25] WU X, MOOKHERJEE M, GU T T, et al. Elasticity and anisotropy of iron-nickel phosphides at high pressures [J]. Geophysical Research Letters, 2011, 38(20): L20301.
    [26] DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525: 226–229. doi: 10.1038/nature14681
    [27] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/5/6): 235–248.
    [28] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673. doi: 10.1029/JB091iB05p04673
    [29] SETO Y, NISHIO-HAMANE D, NAGAI T, et al. Development of a software suite on X-ray diffraction experiments [J]. The Review of High Pressure Science and Technology, 2010, 20(3): 269–276. doi: 10.4131/jshpreview.20.269
    [30] TOBY B H. EXPGUI, a graphical user interface for GSAS [J]. Journal of Applied Crystallography, 2001, 34(2): 210–213. doi: 10.1107/S0021889801002242
    [31] ANGEL R J, ALVARO M, GONZALEZ-PLATAS J. EosFit7c and a Fortran module (library) for equation of state calculations [J]. Zeitschrift für Kristallographie: Crystalline Materials, 2014, 229(5): 1165–1176.
    [32] FUJII H, HŌKABE T, FUJIWARA H, et al. Magnetic properties of single crystals of the system (Fe1-xNix)2P [J]. Journal of the Physical Society of Japan, 1978, 44(1): 96–100. doi: 10.1143/JPSJ.44.96
    [33] MAEDA Y, TAKASHIMA Y. Mössbauer studies of FeNiP and related compounds [J]. Journal of Inorganic and Nuclear Chemistry, 1973, 35(6): 1963–1969. doi: 10.1016/0022-1902(73)80134-4
    [34] BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809. doi: 10.1103/PhysRev.71.809
    [35] ANGEL R J. Equations of state [J]. Reviews in Mineralogy and Geochemistry, 2000, 41(1): 35–59. doi: 10.2138/rmg.2000.41.2
    [36] KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media [J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413. doi: 10.1088/0022-3727/42/7/075413
    [37] DEWAELE A, LOUBEYRE P. Pressurizing conditions in helium-pressure-transmitting medium [J]. High Pressure Research, 2007, 27(4): 419–429. doi: 10.1080/08957950701659627
    [38] RUEFF J P, RAYMOND S, YARESKO A, et al. Pressure-induced f-electron delocalization in the U-based strongly correlated compounds UPd3 and UPd2Al3: resonant inelastic X-ray scattering and first-principles calculations [J]. Physical Review B, 2007, 76(8): 085113. doi: 10.1103/PhysRevB.76.085113
    [39] DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Quasihydrostatic equation of state of iron above 2 Mbar [J]. Physical Review Letters, 2006, 97(21): 215504. doi: 10.1103/PhysRevLett.97.215504
    [40] CHEN B, PENWELL D, KRUGER M. The compressibility of nanocrystalline nickel [J]. Solid State Communications, 2000, 115(4): 191–194. doi: 10.1016/S0038-1098(00)00160-5
    [41] WILLIAMS J G, BOGGS D H, YODER C F, et al. Lunar rotational dissipation in solid body and molten core [J]. Journal of Geophysical Research: Planets, 2001, 106(E11): 27933–27968. doi: 10.1029/2000JE001396
    [42] WILLIAMS J G, KONOPLIV A S, BOGGS D H, et al. Lunar interior properties from the GRAIL mission [J]. Journal of Geophysical Research: Planets, 2014, 119(7): 1546–1578. doi: 10.1002/2013JE004559
    [43] LOGNONNÉ P, JOHNSON C L. Treatise in Geophysics: planetary seismology [M]. Oxford, UK: Elsevier, 2007: 69–122.
    [44] WIECZOREK M A. The constitution and structure of the lunar interior [J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1): 221–364. doi: 10.2138/rmg.2006.60.3
    [45] RAI N, VAN WESTRENEN W. Lunar core formation: new constraints from metal-silicate partitioning of siderophile elements [J]. Earth and Planetary Science Letters, 2014, 388: 343–352. doi: 10.1016/j.jpgl.2013.12.001
    [46] STEENSTRA E S, RAI N, KNIBBE J S, et al. New geochemical models of core formation in the Moon from metal-silicate partitioning of 15 siderophile elements [J]. Earth and Planetary Science Letters, 2016, 441: 1–9. doi: 10.1016/j.jpgl.2016.02.028
    [47] WEBER R C, LIN P Y, GARNERO E J, et al. Seismic detection of the lunar core [J]. Science, 2011, 331(6015): 309–312. doi: 10.1126/science.1199375
    [48] MORARD G, BOUCHET J, RIVOLDINI A, et al. Liquid properties in the Fe-FeS system under moderate pressure: tool box to model small planetary cores [J]. American Mineralogist, 2018, 103: 1770–1779.
    [49] JING Z C, WANG Y B, KONO Y, et al. Sound velocity of Fe-S liquids at high pressure: implications for the Moon’s molten outer core [J]. Earth and Planetary Science Letters, 2014, 396: 78–87. doi: 10.1016/j.jpgl.2014.04.015
    [50] CHI H, DASGUPTA R, DUNCAN M S, et al. Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean: implications for the abundance and origin of volatiles in Earth, Mars, and the Moon [J]. Geochimica et Cosmochimica Acta, 2014, 139: 447–471. doi: 10.1016/j.gca.2014.04.046
    [51] RIGHTER K, GO B M, PANDO K A, et al. Phase equilibria of a low S and C lunar core: implications for an early lunar dynamo and physical state of the current core [J]. Earth and Planetary Science Letters, 2017, 463: 323–332. doi: 10.1016/j.jpgl.2017.02.003
    [52] RIGHTER K, DRAKE M J. Core formation in Earth’s Moon, Mars, and Vesta [J]. Icarus, 1996, 124(2): 513–529. doi: 10.1006/icar.1996.0227
    [53] NEWSOM H E, DRAKE M J. Experimental investigation of the partitioning of phosphorus between metal and silicate phases: implications for the Earth, Moon, and Eucrite parent body [J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 93–100. doi: 10.1016/0016-7037(83)90093-5
    [54] CHANTEL J, JING Z C, XU M, et al. Pressure dependence of the liquidus and solidus temperatures in the Fe-P binary system determined by in situ ultrasonics: implications to the solidification of Fe-P liquids in planetary cores [J]. Journal of Geophysical Research: Planets, 2018, 123(5): 1113–1124. doi: 10.1029/2017JE005376
    [55] MININ D A, SHATSKIY A F, LITASOV K D, et al. The Fe-Fe2P phase diagram at 6 GPa [J]. High Pressure Research, 2019, 39(1): 50–68. doi: 10.1080/08957959.2018.1562552
    [56] CHEN B, GAO L, FUNAKOSHI K, et al. Thermal expansion of iron-rich alloys and implications for the Earth’s core [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9162–9167. doi: 10.1073/pnas.0610474104
    [57] TSUJINO N, NISHIHARA Y, NAKAJIMA Y, et al. Equation of state of γ-Fe: reference density for planetary cores [J]. Earth and Planetary Science Letters, 2013, 375: 244–253. doi: 10.1016/j.jpgl.2013.05.040
    [58] FISCHER R A, CAMPBELL A J, CARACAS R, et al. Equations of state in the Fe-FeSi system at high pressures and temperatures [J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2810–2827. doi: 10.1002/2013JB010898
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  12297
  • HTML全文浏览量:  3590
  • PDF下载量:  64
出版历程
  • 收稿日期:  2019-09-20
  • 修回日期:  2019-10-14
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回