多晶体压剪试样静态加载有限元计算

赵伟业 赵聃 吕品 金涛 马胜国

赵伟业, 赵聃, 吕品, 金涛, 马胜国. 多晶体压剪试样静态加载有限元计算[J]. 高压物理学报, 2020, 34(2): 024203. doi: 10.11858/gywlxb.20190836
引用本文: 赵伟业, 赵聃, 吕品, 金涛, 马胜国. 多晶体压剪试样静态加载有限元计算[J]. 高压物理学报, 2020, 34(2): 024203. doi: 10.11858/gywlxb.20190836
ZHAO Weiye, ZHAO Dan, LÜ Pin, JIN Tao, MA Shengguo. Finite Element Calculation of Polycrystalline Shear-Compression Specimens with Static Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024203. doi: 10.11858/gywlxb.20190836
Citation: ZHAO Weiye, ZHAO Dan, LÜ Pin, JIN Tao, MA Shengguo. Finite Element Calculation of Polycrystalline Shear-Compression Specimens with Static Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024203. doi: 10.11858/gywlxb.20190836

多晶体压剪试样静态加载有限元计算

doi: 10.11858/gywlxb.20190836
基金项目: 国家自然科学基金(11602158, 11802199, 11572214);山西省自然科学青年基金(201601D021026);山西省“1331工程”重点创新团队
详细信息
    作者简介:

    赵伟业(1992-),男,硕士研究生,主要从事多晶体有限变形数值计算研究.E-mail:939029385@qq.com

    通讯作者:

    赵 聃(1985-),男,博士,讲师,主要从事多晶体有限变形算法及多尺度本构理论研究.E-mail:zhaodan@tyut.edu.cn

  • 中图分类号: O344.1

Finite Element Calculation of Polycrystalline Shear-Compression Specimens with Static Loading

  • 摘要: 基于晶体塑性理论研究了晶体织构对数值计算结果的影响,建立了带有织构的多晶体压剪试样(SCS)模型。从材料和试样结构两方面研究了静态加载条件下微观晶粒在有限变形过程中对试样宏观力学性能的影响。由于模型几何结构的特殊性,重点对模型斜槽部分的应力、应变及变形特点进行了分析。考虑到试样在压缩过程中受摩擦的影响,数值分析了不同摩擦系数对变形过程的影响,在此基础上计算了相同摩擦系数下不同晶粒数目、不同单元数目以及单元类型对多晶体压剪模型力学性能的影响,并对试件关键部位不同取向晶粒的应力状态进行了分析。

     

  • 图  多晶体随机织构和丝织构的极图

    Figure  1.  Polar graphs of polycrystalline with random texture and fiber texture

    图  具有不同初始织构的单向压缩应力-应变曲线

    Figure  2.  Unidirectional compression stress-strain curves with different initial textures

    图  多晶体压剪试样几何尺寸

    Figure  3.  Geometrical dimension of polycrystal shear-compression specimen

    图  多晶体压剪模型

    Figure  4.  Polycrystal shear-compression model

    图  不同摩擦系数情况下的应力云图

    Figure  5.  Stress nephogram with different friction coefficients

    图  不同摩擦系数情况下模型斜槽单元的平均切应力-平均切应变曲线

    Figure  6.  Average shear stress-average shear strain curve of the model’s chute element corresponding to different friction coefficients

    图  不同摩擦系数情况下模型斜槽单元的平均正应力-平均正应变曲线

    Figure  7.  Average normal stress-average normal strain curve of the model’s chute element corresponding to different friction coefficients

    图  摩擦系数不同时模型斜槽单元的平均Mises应力-平均等效应变曲线

    Figure  8.  Average Mises stress-average equivalent strain curve of the model’s chute element corresponding to different friction coefficients

    图  摩擦系数不同时模型顶面的力-位移曲线

    Figure  9.  Force-displacement curve of the top surface of the model corresponding to different friction coefficients

    图  10  模型斜槽部分一条棱上所选取的16个单元

    Figure  10.  16 selected elements on an edge of the chute part of the model

    图  11  不同摩擦系数下特征晶粒在压缩方向的应变

    Figure  11.  Strain of characteristic grain in compression direction under different friction coefficients

    图  12  包含不同晶粒数目的压剪有限元模型

    Figure  12.  Finite element models of compression shear with different grain numbers

    图  13  不同晶粒数目对应模型的载荷-位移曲线

    Figure  13.  Force-displacement curves of models corresponding to different numbers of grains

    图  14  单元数目不同的模型

    Figure  14.  Models with different number of elements

    图  15  单元数目不同时模型的Mises变形云图

    Figure  15.  Mises deformation nephograms of models with different numbers of elements

    图  16  单元数目不同时模型的载荷-位移曲线

    Figure  16.  Force-displacement curves of models with different numbers of elements

    图  17  斜槽相同位置处晶粒的Mises应力-等效应变曲线

    Figure  17.  Mises stress-equivalent strain curve of grains at the same position in the chute

    图  18  两种单元类型对应的模型斜槽部分Mises变形云图

    Figure  18.  Mises deformation nephogram of the model with two element types

    图  19  两种单元类型对应的模型顶面力-位移曲线

    Figure  19.  Top surface force-displacement curve of model with two element types

    图  20  两种单元类型对应的模型斜槽部分单元的平均Mises应力-平均等效应变曲线

    Figure  20.  Average Mises stress-strain curves of the sloped part of the model with two element types

    表  1  6061铝合金材料参数[23]

    Table  1.   Material parameters of 6061 aluminum alloy[23]

    C11/GPaC12/GPaC44/GPamq${ { {\dot {\gamma } } }_{{0}}}$/s–1h0/MPaτ0/MPaτs/MPa
    108.20061.30028.500201.119623.554
    下载: 导出CSV

    表  2  不同摩擦系数对应模型的数值结果比较

    Table  2.   Numerical results of models corresponding to different friction coefficients

    Friction coefficientMaximum shear
    strain
    Maximum normal
    strain
    Maximum equivalent
    strain
    Maximum
    force/N
    0.0250.740−0.3310.741 8 899.73
    0.0500.697−0.2630.625 9 566.97
    0.1000.651−0.2120.55310 001.50
    Relative maximum difference13.7%56.1%34.0%12.4%
    下载: 导出CSV

    表  3  特征晶粒欧拉角

    Table  3.   Euler angle of characteristic grains

    Grain numberφ1/(°)$\psi$/(°)φ2/(°)Grain numberφ1/(°)$\psi$/(°)φ2/(°)
    169.24167.348.619334.9338.1929.33
    244.0592.3945.561030.45127.11356.19
    3356.63154.9276.611159.93105.73313.11
    4305.7423.07333.371288.45166.0533.32
    545.14101.4264.901374.86154.71302.25
    6282.8886.40282.111476.3551.48307.37
    7350.37146.78286.511579.6577.10351.57
    849.773.76329.8016357.2856.0072.22
    下载: 导出CSV

    表  4  单元数目不同时模型在不同压缩距离下的载荷及其最大相对偏差

    Table  4.   Loads of the model with different numbers of elements at different compression distance and their maximum relative differences

    Number of elementsLoad/N
    1.0 mm1.4 mm1.8 mm2.5 mm
    8 026−7 790.82−8 180.42−8 469.96−8 726.07
    14 604−7 487.38−7 824.37−8 008.19−8 157.61
    23 835−7 669.64−8 038.55−8 270.62−8 436.06
    Maximum relative difference4.05%4.55%5.77%6.97%
    下载: 导出CSV
  • [1] 董湘怀, 仲町英治. 晶体塑性模型在板材成形计算机模拟中的应用 [J]. 中国机械工程, 1997, 8(4): 27–30, 118.

    DONG X H, NAKAMACHI E. Application of crystal plastic model in computer simulation of sheet metal forming [J]. China Mechanical Engineering, 1997, 8(4): 27–30, 118.
    [2] 刘海军, 方刚, 曾攀. 基于晶体塑性理论的大变形数值模拟技术 [J]. 塑性工程学报, 2006, 13(2): 1–8, 28. doi: 10.3969/j.issn.1007-2012.2006.02.001

    LIU H J, FANG G, ZENG P. Numerical simulation of large deformation based on the theory of crystal plasticity [J]. Journal of Plastic Engineering, 2006, 13(2): 1–8, 28. doi: 10.3969/j.issn.1007-2012.2006.02.001
    [3] 皮华春, 韩静涛, 薛永栋. 金属塑性成形的晶体塑性学有限元模拟研究进展 [J]. 机械工程学报, 2006, 42(3): 15–21. doi: 10.3321/j.issn:0577-6686.2006.03.003

    PI H C, HAN J T, XUE Y D. Progress in finite element simulation of metal plasticity forming with crystal plasticity [J]. Journal of Mechanical Engineering, 2006, 42(3): 15–21. doi: 10.3321/j.issn:0577-6686.2006.03.003
    [4] 司良英. FCC金属冷加工织构演变的晶体塑性有限元模拟 [D]. 沈阳: 东北大学, 2009.

    SI L Y. Finite element simulation of crystal plasticity in FCC metal cold working texture evolution [D]. Shenyang: Northeastern University, 2009.
    [5] 司良英, 邓关宇, 吕程. 基于Voronoi图的晶体塑性有限元多晶几何建模 [J]. 材料与冶金学报, 2009, 8(3): 193–197, 216.

    SI L Y, DENG G Y, LÜ C. Crystal plastic finite element polycrystalline geometry modeling based on Voronoi diagram [J]. Journal of Materials and Metallurgy, 2009, 8(3): 193–197, 216.
    [6] 张丰果, 董湘怀. 微塑性成形模拟材料细观建模 [J]. 模具技术, 2011(3): 16–19.

    ZHANG F G, DONG X H. Microplastic forming simulates material microscopic modeling [J]. Mould Technology, 2011(3): 16–19.
    [7] 郑文, 徐松林, 蔡超. 基于Hopkinson压杆的动态压剪复合加载实验研究 [J]. 力学学报, 2012, 44(1): 124–131.

    ZHENG W, XU S L, CAI C. Experimental study on dynamic compression shear composite loading based on Hopkinson compression bar [J]. Journal of Mechanics, 2012, 44(1): 124–131.
    [8] 章超, 徐松林, 王道荣. 花岗岩动静态压剪复合加载实验研究 [J]. 固体力学学报, 2014, 35(2): 115–123.

    ZHANG C, XU S L, WANG D R. Experimental study on dynamic and static compressor-shear composite loading of granite [J]. Journal of Solid Mechanics, 2014, 35(2): 115–123.
    [9] 李雪艳, 李志斌, 张舵. 闭孔泡沫铝准静态压剪性能研究 [J]. 高压物理学报, 2018, 32(3): 52–59. doi: 10.11858/gywlxb.20170655

    LI X Y, LI Z B, ZHANG D. Study on quasi-static compressive shear properties of aluminum foam with closed-cell [J]. Journal of High Pressure Physics, 2018, 32(3): 52–59. doi: 10.11858/gywlxb.20170655
    [10] RITTEL D, LEE S, RAVICHANDRAN G. A Shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2002, 42(1): 58–64. doi: 10.1007/BF02411052
    [11] RITTEL D, RAVICHANDRAN G, LEE S. Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen [J]. Mechanics of Materials, 2002, 34(10): 627–642. doi: 10.1016/S0167-6636(02)00164-3
    [12] DOROGOY A, RITTEL D. A numerical study of the applicability of the shear compression specimen to parabolic hardening materials [J]. Experimental Mechanics, 2006, 46(3): 355–366. doi: 10.1007/s11340-006-6414-8
    [13] DOROGOY A, RITTEL D. Numerical validation of the shear compression specimen. Part Ⅱ: dynamic large strain testing [J]. Experimental Mechanics, 2005, 45(2): 178–185. doi: 10.1007/BF02428191
    [14] DOROGOY A, RITTEL D. Numerical validation of the shear compression specimen. Part I: quasi-static large strain testing [J]. Experimental Mechanics, 2005, 45(2): 167–177. doi: 10.1007/BF02428190
    [15] DOROGOY A, RITTEL D, GODINGER A. Modification of the shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2015, 55(9): 1627–1639. doi: 10.1007/s11340-015-0057-6
    [16] VURAL M, MOLINARI A, BHATTACHARYYA N. Analysis of slot orientation in shear-compression specimen (SCS) [J]. Experimental Mechanics, 2010, 51(3): 263–273.
    [17] ZHAO J, KNAUSS W G, RAVICHANDRAN G. A new shear-compression-specimen for determining quasistatic and dynamic polymer properties [J]. Experimental Mechanics, 2008, 49(3): 427–436.
    [18] PIERCE D, ASARO R J, NEEDLEMAN A. Material rate sensitivity and localized deformation in crystalline solids [J]. Acta Metall, 1983, 31(12): 1951–1976. doi: 10.1016/0001-6160(83)90014-7
    [19] ASARO R J, NEEDLEMAN A. Overview No. 42 texture development and strain hardening in rate dependent polycrystals [J]. Acta Metallurgica, 1985, 33(6): 923–953.
    [20] HUANG Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program: MECH 178 [R]. Harvard University, 1991.
    [21] 王国军, 孙强. 4032合金热挤压棒材变形行为及形变织构 [J]. 黑龙江冶金, 2013, 33(2): 1–5, 8.

    WANG G J, SUN Q. Deformation behavior and deformation texture of hot extruded 4032 alloy bar [J]. Heilongjiang Metallurgy, 2013, 33(2): 1–5, 8.
    [22] HUANG S Y, ZHANG S R, LI D Y. Simulation of texture evolution during plastic deformation of FCC, BCC and HCP structured crystals with crystal plasticity based finite element method [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1817–1825. doi: 10.1016/S1003-6326(11)60936-9
    [23] 辛存, 赵聃, 闫晓鹏. 材料三维微结构表征及其晶体塑性有限元模拟 [J]. 计算力学学报, 2018, 36(2): 233–239.

    XIN C, ZHAO D, YAN X P. 3D modeling microstructure and crystal plasticity finite element simulation [J]. Journal of Computational Mechanics, 2018, 36(2): 233–239.
    [24] 齐康, 闫昊, 陈祥瑶. 利用ABAQUS模拟不同模态下的金属切削过程 [J]. 机械工程与自动化, 2018(2): 93–94.

    QI K, YAN H, CHEN X Y. Metal cutting processes in different modes are simulated by ABAQUS [J]. Mechanical Engineering and Automation, 2018(2): 93–94.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  8175
  • HTML全文浏览量:  2958
  • PDF下载量:  30
出版历程
  • 收稿日期:  2019-09-19
  • 修回日期:  2019-10-25
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回