金刚烷的高压拉曼光谱研究

黄艳萍 崔田

黄艳萍, 崔田. 金刚烷的高压拉曼光谱研究[J]. 高压物理学报, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832
引用本文: 黄艳萍, 崔田. 金刚烷的高压拉曼光谱研究[J]. 高压物理学报, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832
HUANG Yanping, CUI Tian. Raman Scattering Investigations of Adamantane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832
Citation: HUANG Yanping, CUI Tian. Raman Scattering Investigations of Adamantane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832

金刚烷的高压拉曼光谱研究

doi: 10.11858/gywlxb.20190832
基金项目: 国家自然科学基金(51572108, 51632002);教育部长江学者和创新团队发展计划(IRT_15R23);国家基础科学人才培养基金(J1103202);高等学校学科创新引智计划(B12011)
详细信息
    作者简介:

    黄艳萍(1987-),女,博士,工程师,主要从事高压合成及物性测量研究. E-mail:huangyp1124@jlu.edu.cn

  • 中图分类号: O521.2

Raman Scattering Investigations of Adamantane under High Pressure

  • 摘要: 对金刚烷(C10H16)进行了常温原位高压拉曼光谱研究,最高压力为25 GPa。通过分析高压拉曼光谱,结合拉曼频移随压力的变化情况,得出在实验压力范围内C10H16发生了多次相变。0.6 GPa时,C10H16由常温常压下的无序相($\alpha$相)转变为有序相($\beta $相);继续加压至1.7 GPa时,第2次结构相变开始,直至3.2 GPa,第2次相变完全结束;第3次相变开始于6.3 GPa,结束于7.7 GPa;22.9 GPa时发生了第4次结构相变。另外,首次在拉曼光谱上探测到第3次相变过程中晶格振动峰的变化,说明第3次相变并非前人报道的等结构相变。

     

  • 图  常温常压下金刚烷的拉曼谱

    Figure  1.  Raman spectrum collected at ambient conditions

    图  298 K、低于25 GPa压力下C10H16的晶格振动峰及其拉曼频移随压力的变化

    Figure  2.  Lattice vibration modes of solid C10H16 measured to 25 GPa at 298 K (a) and the pressure dependence of the corresponding Raman shift (b)

    图  C10H16的C–H伸缩振动峰(2800~3100 cm–1)(a)及其拉曼频移(b)随压力的变化

    Figure  5.  Representative Raman spectra of C10H16 of C–H stretching modes (a) and the Raman shift versus pressure (b) in the frequency range of 2800–3100 cm–1

    图  C10H16的内模振动峰(1300~1500 cm–1)(a)及其拉曼频移(b)随压力的变化

    Figure  4.  Representative Raman spectra of C10H16 of internal vibrational modes (a) and the Raman shift versus pressure (b) in the frequency range of 1300–1500 cm–1

    图  C10H16的内模振动峰(700~1300 cm–1)(a)及其拉曼频移随压力的变化(b)

    Figure  3.  Representative Raman spectra of C10H16 of internal vibrational modes (a) and the Raman shift versus pressure (b) in the frequency range of 700–1300 cm–1

    表  1  常温常压下金刚烷拉曼振动峰的指认以及与文献的对比

    Table  1.   Assignments and vibrational frequencies (cm–1) of observed Raman modes of C10H16 at ambient condition

    Frequency/cm–1Mode
    This workRef.[20]Ref.[17]Ref.[16]Assignment
    2941294429432940$\nu _{18}$C–H stretching mode
    2916291729132915$\nu _{17}$C–H stretching mode
    2893289529832894$\nu _{16}$C–H stretching mode
    284728452847$\nu _{15}$C–H stretching mode
    1474
    1450
    1434143714401435$\nu _{14}$CH2 scissor mode
    13671371$\nu _{13}$CH bending mode
    1315
    1225122312251221$\nu _{12}$CH bending mode
    1197$\nu _{11}$
    1193$\nu _{10}$
    109711021097$\nu _{9}$C–H rock mode
    974 972 976 971$\nu _{8}$C–C stretching mode
    950 951$\nu _{7}$C–C stretching mode
    761 760 759 759$\nu _{6}$C–C stretching mode
    640$\nu _{5}$Lattice mode
    441 443 440 442$\nu _{4}$C–C–C deformation mode
    399$\nu _{3}$Lattice mode
    187$\nu _{2}$Lattice mode
    184$\nu _{1}$Lattice mode
    下载: 导出CSV
  • [1] DUCLOS S J, BRISTER K, HADDON R C, et al. Effects of pressure and stress on C60 fullerite to 20 GPa [J]. Nature, 1991, 351(6325): 380–382. doi: 10.1038/351380a0
    [2] VAUGHAN G B M, HEIEY P A, LUZZI D E, et al. Orientational disorder in solvent-free solid C70 [J]. Science, 1991, 254(5036): 1350–1353. doi: 10.1126/science.254.5036.1350
    [3] KITAIGORODSKI A I. Organic chemical crystallography [M]. New York: Consultants Bureau Enterprises, 1961: 113.
    [4] AMOUREUX J P, BEE M, DAMIEN J C. Structure of adamantane, C10H16, in the disordered phase [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(11): 2633–2636. doi: 10.1107/S0567740880009570
    [5] AMOUREUX J P, BEE M. A cubic harmonic analysis of the plastic crystal structures of adamantane, C10H16, and adamantanone, C10H14O, at room temperature [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(11): 2636–2642. doi: 10.1107/S0567740880009582
    [6] NORDMAN C E, SCHMITKONS D L. Phase transition and crystal structures of adamantane [J]. Acta Crystallographica, 1965, 18(4): 764–767. doi: 10.1107/S0365110X65001755
    [7] MUJICA A, RUBIO A, MUNOZ A, et al. High-pressure phases of group-IV, III-V, and II-VI compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863. doi: 10.1103/RevModPhys.75.863
    [8] HEMLEY R J, ASHCROFT N W. The revealing role of pressure in the condensed matter sciences [J]. Physics Today, 1998, 51(8): 26–32. doi: 10.1063/1.882374
    [9] JAYARAMAN A. Ultrahigh pressures [J]. Review of Scientific Instruments, 1986, 57(6): 1013–1031. doi: 10.1063/1.1138654
    [10] PARISE J B. High pressure studies [J]. Reviews in Mineralogy and Geochemistry, 2006, 63(1): 205–231. doi: 10.2138/rmg.2006.63.9
    [11] STÖFFLER D. Minerals in the deep Earth: a message from the asteroid belt [J]. Science, 1997, 278(5343): 1576–1577. doi: 10.1126/science.278.5343.1576
    [12] WILLIAMS Q, HEMLEY R J. Hydrogen in the deep Earth [J]. Annual Review of Earth and Planetary Sciences, 2001, 29(1): 365–418. doi: 10.1146/annurev.earth.29.1.365
    [13] ITO T. Pressure-induced phase transition in adamantane [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1973, 29(2): 364–365. doi: 10.1107/S0567740873002517
    [14] MURUGAN N A, RAO R S, YASHONATH S, et al. High-pressure study of adamantane: variable shape simulations up to 26 GPa [J]. The Journal of Physical Chemistry B, 2005, 109(36): 17296–17303. doi: 10.1021/jp053542h
    [15] MURUGAN N A, YASHONATH S. Pressure-induced ordering in adamantane: a Monte Carlo simulation study [J]. The Journal of Physical Chemistry B, 2005, 109(5): 2014–2020. doi: 10.1021/jp047178i
    [16] BURNS G, DACOL F H, WELBER B. Lattice vibrational study of the phase transition in the plastic crystal adamantane (C10H16) [J]. Solid State Communications, 1979, 32(2): 151–155. doi: 10.1016/0038-1098(79)91077-9
    [17] RAO R, SAKUNTALA T, DEB S K, et al. High pressure Raman scattering studies on adamantane [J]. The Journal of Chemical Physics, 2000, 112(15): 6739–6744. doi: 10.1063/1.481227
    [18] VIJAYAKUMAR V, GARG A B, GODWAL B K, et al. High-pressure phase transitions in adamantane [J]. Chemical Physics Letters, 2000, 330(3/4): 275–280.
    [19] BISTRIČIĆ L, BARANOVIĆ G, ILIJIĆ S. Raman study of structural relaxation and boson peak in amorphous films of adamantane [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(7): 1537–1546. doi: 10.1016/j.saa.2004.11.015
    [20] 刘卅, 郭建维. 金刚烷的结构、溶解性及热力学性质 [J]. 含能材料, 2006, 14(6): 485–490. doi: 10.3969/j.issn.1006-9941.2006.06.019

    LIU S, GUO J W. Structure analysis, solubility and thermodynamics properties of adamantine [J]. Chinese Journal of Energetic Materials, 2006, 14(6): 485–490. doi: 10.3969/j.issn.1006-9941.2006.06.019
    [21] AOKI K, BAER B J, CYNN H C, et al. Raman study of molecular rearrangement in HCN under pressure [M]//PUCCI R, PICCITTO G. Molecular Systems under High Pressure. North-Holland: Elsevier Science, 1991: 283.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  11724
  • HTML全文浏览量:  2899
  • PDF下载量:  52
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2019-09-11

目录

    /

    返回文章
    返回