金刚烷的高压拉曼光谱研究

黄艳萍 崔田

黄艳萍, 崔田. 金刚烷的高压拉曼光谱研究[J]. 高压物理学报, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832
引用本文: 黄艳萍, 崔田. 金刚烷的高压拉曼光谱研究[J]. 高压物理学报, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832
TANG Changzhou, ZHI Xiaoqi, HAO Chunjie, FAN Xinghua. Numerical Simulation of Anti-Penetration Performance of Body Armor against Small Tungsten Sphere[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034203. doi: 10.11858/gywlxb.20210715
Citation: HUANG Yanping, CUI Tian. Raman Scattering Investigations of Adamantane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832

金刚烷的高压拉曼光谱研究

doi: 10.11858/gywlxb.20190832
基金项目: 国家自然科学基金(51572108, 51632002);教育部长江学者和创新团队发展计划(IRT_15R23);国家基础科学人才培养基金(J1103202);高等学校学科创新引智计划(B12011)
详细信息
    作者简介:

    黄艳萍(1987-),女,博士,工程师,主要从事高压合成及物性测量研究. E-mail:huangyp1124@jlu.edu.cn

  • 中图分类号: O521.2

Raman Scattering Investigations of Adamantane under High Pressure

  • 摘要: 对金刚烷(C10H16)进行了常温原位高压拉曼光谱研究,最高压力为25 GPa。通过分析高压拉曼光谱,结合拉曼频移随压力的变化情况,得出在实验压力范围内C10H16发生了多次相变。0.6 GPa时,C10H16由常温常压下的无序相(α相)转变为有序相(β相);继续加压至1.7 GPa时,第2次结构相变开始,直至3.2 GPa,第2次相变完全结束;第3次相变开始于6.3 GPa,结束于7.7 GPa;22.9 GPa时发生了第4次结构相变。另外,首次在拉曼光谱上探测到第3次相变过程中晶格振动峰的变化,说明第3次相变并非前人报道的等结构相变。

     

  • 图  常温常压下金刚烷的拉曼谱

    Figure  1.  Raman spectrum collected at ambient conditions

    图  298 K、低于25 GPa压力下C10H16的晶格振动峰及其拉曼频移随压力的变化

    Figure  2.  Lattice vibration modes of solid C10H16 measured to 25 GPa at 298 K (a) and the pressure dependence of the corresponding Raman shift (b)

    图  C10H16的C–H伸缩振动峰(2800~3100 cm–1)(a)及其拉曼频移(b)随压力的变化

    Figure  5.  Representative Raman spectra of C10H16 of C–H stretching modes (a) and the Raman shift versus pressure (b) in the frequency range of 2800–3100 cm–1

    图  C10H16的内模振动峰(1300~1500 cm–1)(a)及其拉曼频移(b)随压力的变化

    Figure  4.  Representative Raman spectra of C10H16 of internal vibrational modes (a) and the Raman shift versus pressure (b) in the frequency range of 1300–1500 cm–1

    图  C10H16的内模振动峰(700~1300 cm–1)(a)及其拉曼频移随压力的变化(b)

    Figure  3.  Representative Raman spectra of C10H16 of internal vibrational modes (a) and the Raman shift versus pressure (b) in the frequency range of 700–1300 cm–1

    表  1  常温常压下金刚烷拉曼振动峰的指认以及与文献的对比

    Table  1.   Assignments and vibrational frequencies (cm–1) of observed Raman modes of C10H16 at ambient condition

    Frequency/cm–1Mode
    This workRef.[20]Ref.[17]Ref.[16]Assignment
    2941294429432940ν18C–H stretching mode
    2916291729132915ν17C–H stretching mode
    2893289529832894ν16C–H stretching mode
    284728452847ν15C–H stretching mode
    1474
    1450
    1434143714401435ν14CH2 scissor mode
    13671371ν13CH bending mode
    1315
    1225122312251221ν12CH bending mode
    1197ν11
    1193ν10
    109711021097ν9C–H rock mode
    974 972 976 971ν8C–C stretching mode
    950 951ν7C–C stretching mode
    761 760 759 759ν6C–C stretching mode
    640ν5Lattice mode
    441 443 440 442ν4C–C–C deformation mode
    399ν3Lattice mode
    187ν2Lattice mode
    184ν1Lattice mode
    下载: 导出CSV
  • [1] DUCLOS S J, BRISTER K, HADDON R C, et al. Effects of pressure and stress on C60 fullerite to 20 GPa [J]. Nature, 1991, 351(6325): 380–382. doi: 10.1038/351380a0
    [2] VAUGHAN G B M, HEIEY P A, LUZZI D E, et al. Orientational disorder in solvent-free solid C70 [J]. Science, 1991, 254(5036): 1350–1353. doi: 10.1126/science.254.5036.1350
    [3] KITAIGORODSKI A I. Organic chemical crystallography [M]. New York: Consultants Bureau Enterprises, 1961: 113.
    [4] AMOUREUX J P, BEE M, DAMIEN J C. Structure of adamantane, C10H16, in the disordered phase [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(11): 2633–2636. doi: 10.1107/S0567740880009570
    [5] AMOUREUX J P, BEE M. A cubic harmonic analysis of the plastic crystal structures of adamantane, C10H16, and adamantanone, C10H14O, at room temperature [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(11): 2636–2642. doi: 10.1107/S0567740880009582
    [6] NORDMAN C E, SCHMITKONS D L. Phase transition and crystal structures of adamantane [J]. Acta Crystallographica, 1965, 18(4): 764–767. doi: 10.1107/S0365110X65001755
    [7] MUJICA A, RUBIO A, MUNOZ A, et al. High-pressure phases of group-IV, III-V, and II-VI compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863. doi: 10.1103/RevModPhys.75.863
    [8] HEMLEY R J, ASHCROFT N W. The revealing role of pressure in the condensed matter sciences [J]. Physics Today, 1998, 51(8): 26–32. doi: 10.1063/1.882374
    [9] JAYARAMAN A. Ultrahigh pressures [J]. Review of Scientific Instruments, 1986, 57(6): 1013–1031. doi: 10.1063/1.1138654
    [10] PARISE J B. High pressure studies [J]. Reviews in Mineralogy and Geochemistry, 2006, 63(1): 205–231. doi: 10.2138/rmg.2006.63.9
    [11] STÖFFLER D. Minerals in the deep Earth: a message from the asteroid belt [J]. Science, 1997, 278(5343): 1576–1577. doi: 10.1126/science.278.5343.1576
    [12] WILLIAMS Q, HEMLEY R J. Hydrogen in the deep Earth [J]. Annual Review of Earth and Planetary Sciences, 2001, 29(1): 365–418. doi: 10.1146/annurev.earth.29.1.365
    [13] ITO T. Pressure-induced phase transition in adamantane [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1973, 29(2): 364–365. doi: 10.1107/S0567740873002517
    [14] MURUGAN N A, RAO R S, YASHONATH S, et al. High-pressure study of adamantane: variable shape simulations up to 26 GPa [J]. The Journal of Physical Chemistry B, 2005, 109(36): 17296–17303. doi: 10.1021/jp053542h
    [15] MURUGAN N A, YASHONATH S. Pressure-induced ordering in adamantane: a Monte Carlo simulation study [J]. The Journal of Physical Chemistry B, 2005, 109(5): 2014–2020. doi: 10.1021/jp047178i
    [16] BURNS G, DACOL F H, WELBER B. Lattice vibrational study of the phase transition in the plastic crystal adamantane (C10H16) [J]. Solid State Communications, 1979, 32(2): 151–155. doi: 10.1016/0038-1098(79)91077-9
    [17] RAO R, SAKUNTALA T, DEB S K, et al. High pressure Raman scattering studies on adamantane [J]. The Journal of Chemical Physics, 2000, 112(15): 6739–6744. doi: 10.1063/1.481227
    [18] VIJAYAKUMAR V, GARG A B, GODWAL B K, et al. High-pressure phase transitions in adamantane [J]. Chemical Physics Letters, 2000, 330(3/4): 275–280.
    [19] BISTRIČIĆ L, BARANOVIĆ G, ILIJIĆ S. Raman study of structural relaxation and boson peak in amorphous films of adamantane [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(7): 1537–1546. doi: 10.1016/j.saa.2004.11.015
    [20] 刘卅, 郭建维. 金刚烷的结构、溶解性及热力学性质 [J]. 含能材料, 2006, 14(6): 485–490. doi: 10.3969/j.issn.1006-9941.2006.06.019

    LIU S, GUO J W. Structure analysis, solubility and thermodynamics properties of adamantine [J]. Chinese Journal of Energetic Materials, 2006, 14(6): 485–490. doi: 10.3969/j.issn.1006-9941.2006.06.019
    [21] AOKI K, BAER B J, CYNN H C, et al. Raman study of molecular rearrangement in HCN under pressure [M]//PUCCI R, PICCITTO G. Molecular Systems under High Pressure. North-Holland: Elsevier Science, 1991: 283.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  11799
  • HTML全文浏览量:  2932
  • PDF下载量:  53
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2019-09-11

目录

    /

    返回文章
    返回