3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟

孟祥生 武晓东 张海广

孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟[J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
引用本文: 孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟[J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
Citation: MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827

3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟

doi: 10.11858/gywlxb.20190827
基金项目: 国家自然科学基金(11702185);山西省高校创新科技项目(173230113-S)
详细信息
    作者简介:

    孟祥生(1994-),男,硕士研究生,主要从事仿贝壳珍珠层复合材料力学性能研究.E-mail:1850428137@qq.com

    通讯作者:

    武晓东(1983-),男,博士,讲师,主要从事复合材料动力学研究. E-mail:wuxiaodong@tyut.edu.cn

  • 中图分类号: O347.3; TB332

Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites

  • 摘要: 通过有限元数值模拟研究了3D打印浆砌层合结构复合材料的层间断裂韧性。首先建立了基于内聚力原理和位移控制加载法的I型和II型断裂韧性有限元模型,模拟复合材料层间张开和错开的过程,随后通过有限元数值模拟与模型试验对比分析,验证了有限元数值方法的可靠性,最后分析了复合材料初始裂纹长度、断裂韧性、起始界面刚度、界面强度、黏结层厚度以及净距等参数对3D打印浆砌层合结构复合材料层间力学性能的影响。研究结果表明:对I型模型,减小初始裂纹长度、增大断裂韧性和增大黏结层厚度均能提高层间承载能力,起始界面刚度和界面强度的改变对拉伸力峰值无明显变化;对II型模型,减小初始裂纹长度、增强界面强度、增大断裂韧性和减小黏结层厚度均能提高层间承载能力,起始界面刚度的改变对荷载-位移曲线无明显影响。

     

  • 图  珍珠层微结构[4]

    Figure  1.  Microstructure of nacre[4]

    图  双线性拉伸分离准则

    Figure  2.  Bilinear stretching separation criteria

    图  I型有限元模型及示意图

    Figure  3.  Finite element model and schematic of model-I

    图  II型有限元模型及示意图

    Figure  4.  Finite element model and schematic of model-II

    图  断裂韧性测试试验照片

    Figure  5.  Picture of fracture toughness test

    图  不同黏结层厚度的I型对比

    Figure  6.  Comparison chart of different bonding layer thicknesses in model-I

    图  不同黏结层厚度的II型对比

    Figure  7.  Comparison chart of different bonding layer thicknesses in model-II

    图  初始裂纹长度对I型荷载-位移曲线的影响

    Figure  8.  Influence of initial crack length on model-I load-displacement curve

    图  初始裂纹长度对裂纹尖端开口位移曲线的影响

    Figure  9.  Influence of initial crack length on crack tip opening displacement curves

    图  10  断裂韧性对I型荷载-位移曲线的影响

    Figure  10.  Influence of fracture toughness on model-I load-displacement curve

    图  11  起始界面刚度对I型荷载-位移曲线的影响

    Figure  11.  Influence of interface stiffness on model-I load-displacement curve

    图  12  界面强度对I型荷载-位移曲线的影响

    Figure  12.  Influence of interface strength on model-I load-displacement curve

    图  13  初始裂纹长度对II型荷载-位移曲线的影响

    Figure  13.  Influence of initial crack length on model-II load-displacement curve

    图  14  断裂韧性对II型荷载-位移曲线的影响

    Figure  14.  Influence of fracture toughness on model-II load-displacement curve

    图  15  断裂韧性对应的荷载峰值变化曲线

    Figure  15.  Loading peak curve corresponding to fracture toughness

    图  16  起始界面刚度对II型荷载-位移曲线的影响

    Figure  16.  Influence of interface stiffness on model-II load-displacement curve

    图  17  界面强度对II型荷载-位移曲线的影响

    Figure  17.  Influence of interface strength on model-II load-displacement curve

    图  18  净距对II型荷载-位移曲线的影响

    Figure  18.  Influence of clear distance on model-II load-displacement curve

    表  1  内聚力参数

    Table  1.   Cohesive parameters

    T/mmNmax/ MPaSmax/ MPaGI/(N∙mm−1)GII/(N∙mm−1)Knn/(N∙mm−3)Kss/(N∙mm−3)
    0.160.352.0 0.40 0.7315 62531 250
    0.20 0.50 2.50.550.6512 50025 000
    下载: 导出CSV
  • [1] SCHÄFFER T E, IONESCUZANETTI C, PROKSCH R, et al. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges [J]. Chemistry of Materials, 1998, 10(8): 946–946.
    [2] SHAO Y, ZHAO H P, FENG X Q, et al. Discontinuous crack-bridging model for fracture toughness analysis of nacre [J]. Journal of the Mechanics and Physics of Solids, 2012, 60(8): 1400–1419. doi: 10.1016/j.jmps.2012.04.011
    [3] 万欣娣, 任凤章, 刘平, 等. 贝壳珍珠层的研究现状 [J]. 材料导报, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006

    WAN X D, REN F Z, LIU P, et al. Research status of shell nacre [J]. Materials Reports, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006
    [4] BERTOLDI K, BIGONI D, DRUGAN W J. Nacre: an orthotropic and bimodular elastic material [J]. Composites Science and Technology, 2008, 68(6): 1363–1375. doi: 10.1016/j.compscitech.2007.11.016
    [5] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734.

    MA X Y, LIANG H Y, WANG L F. Mechanical properties of three-dimensional printed shell biomimetic structures [J]. Science Bulletin, 2016, 61(7): 728–734.
    [6] XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix [J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 111–132. doi: 10.1088/0965-0393/1/2/001
    [7] HOSSEINI M R, TAHERI-BEHROOZ F, SALAMAT-TALAB M. Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface [J]. Polymer Testing, 2019, 78: 105943. doi: 10.1016/j.polymertesting.2019.105943
    [8] HUA X G, LI H G, LU Y, et al. Interlaminar fracture toughness of glare laminates based on asymmetric double cantilever beam (ADCB) [J]. Composites Part B: Engineering, 2019, 163: 175–184. doi: 10.1016/j.compositesb.2018.11.040
    [9] 宗要武. 基于内聚力模型的钢纤维水泥基材料界面性能分析 [D]. 重庆: 重庆大学, 2018: 23–27.

    ZONG Y W. Analysis of interfacial bonding properties of cement-based materials with steel fibers based on cohesive zone model [D]. Chongqing: Chongqing University, 2018: 23–27.
    [10] ALFARO M V C, SUIKER A S J, RENÉ D B, et al. Analysis of fracture and delamination in laminates using 3D numerical modelling [J]. Engineering Fracture Mechanics, 2009, 76(6): 761–780. doi: 10.1016/j.engfracmech.2008.09.002
    [11] LIU Y, DER M F P, SLUYS L J. Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminate [J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 617–630. doi: 10.1016/j.tafmec.2018.07.004
    [12] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展 [J]. 航空学报, 2019, 40(1): 509–522.

    ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates [J]. Acta Aeronauticaet Astronautica Sinica, 2019, 40(1): 509–522.
    [13] 寇剑锋, 徐绯, 郭家平, 等. 黏聚力模型破坏准则及其参数选取 [J]. 机械强度, 2011, 33(5): 714–718.

    KOU J F, XU F, GUO J P, et al. Failure criterion of cohesion model and its parameter selection [J]. Mechanical Strength, 2011, 33(5): 714–718.
    [14] American Society for Testing and Materials. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-01 [S]. West Conshohocken, PA: ASTM, 2007.
    [15] O’BRIEN T K, JOHNSTON W M, TOLAND G J. Mode II interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material: NASA/TM-2010-216838 [R]. Hampton, VA: NASA, 2010.
    [16] ARRESE A, BOYANO A I, DE G J, et al. A novel procedure to determine the cohesive law in DCB tests [J]. Composites Science and Technology, 2017, 152: 76–84. doi: 10.1016/j.compscitech.2017.09.012
    [17] ARRESE A, INSAUSTI N, MUJIKA F, et al. A novel experimental procedure to determine the cohesive law in ENF tests [J]. Composites Science and Technology, 2019, 170: 42–50. doi: 10.1016/j.compscitech.2018.11.031
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  7592
  • HTML全文浏览量:  2649
  • PDF下载量:  35
出版历程
  • 收稿日期:  2019-08-27
  • 修回日期:  2019-10-14
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回