Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites
-
摘要: 通过有限元数值模拟研究了3D打印浆砌层合结构复合材料的层间断裂韧性。首先建立了基于内聚力原理和位移控制加载法的I型和II型断裂韧性有限元模型,模拟复合材料层间张开和错开的过程,随后通过有限元数值模拟与模型试验对比分析,验证了有限元数值方法的可靠性,最后分析了复合材料初始裂纹长度、断裂韧性、起始界面刚度、界面强度、黏结层厚度以及净距等参数对3D打印浆砌层合结构复合材料层间力学性能的影响。研究结果表明:对I型模型,减小初始裂纹长度、增大断裂韧性和增大黏结层厚度均能提高层间承载能力,起始界面刚度和界面强度的改变对拉伸力峰值无明显变化;对II型模型,减小初始裂纹长度、增强界面强度、增大断裂韧性和减小黏结层厚度均能提高层间承载能力,起始界面刚度的改变对荷载-位移曲线无明显影响。Abstract: In this paper, the interlaminar fracture toughness of 3D printed mortar laminated composite was investigated by finite element numerical simulation. Firstly, finite element models of the model-I and model-II fracture toughness were established based on cohesive principle and displacement control loading method, and used to simulate the interlaminar opening and staggering process of composites. Then the reliability of the finite element numerical method was verified by compared with the experiment results. Finally, the effects of initial crack length, fracture toughness, initial interface stiffness, interface strength, bonding layer thickness and clear distance on the mechanical properties of 3D printed mortar laminated composite were analyzed. The results show that, for the model-I, reducing the initial crack length, increasing the fracture toughness and increasing the bonding layer thickness can improve interface bearing capacity; and the change of initial interface stiffness and interface strength has no effect on the peak value of tensile force. For the model-II, reducing the initial crack length, enhancing the interface strength, increasing the fracture toughness value and reducing the bonding layer thickness can improve the interface bearing capacity; and the change of the initial interface stiffness has no significant effect on the load-displacement curve.
-
表 1 内聚力参数
Table 1. Cohesive parameters
T/mm Nmax/ MPa Smax/ MPa GI/(N∙mm−1) GII/(N∙mm−1) Knn/(N∙mm−3) Kss/(N∙mm−3) 0.16 0.35 2.0 0.40 0.73 15 625 31 250 0.20 0.50 2.5 0.55 0.65 12 500 25 000 -
[1] SCHÄFFER T E, IONESCUZANETTI C, PROKSCH R, et al. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges [J]. Chemistry of Materials, 1998, 10(8): 946–946. [2] SHAO Y, ZHAO H P, FENG X Q, et al. Discontinuous crack-bridging model for fracture toughness analysis of nacre [J]. Journal of the Mechanics and Physics of Solids, 2012, 60(8): 1400–1419. doi: 10.1016/j.jmps.2012.04.011 [3] 万欣娣, 任凤章, 刘平, 等. 贝壳珍珠层的研究现状 [J]. 材料导报, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006WAN X D, REN F Z, LIU P, et al. Research status of shell nacre [J]. Materials Reports, 2006, 20(10): 21–24. doi: 10.3321/j.issn:1005-023X.2006.10.006 [4] BERTOLDI K, BIGONI D, DRUGAN W J. Nacre: an orthotropic and bimodular elastic material [J]. Composites Science and Technology, 2008, 68(6): 1363–1375. doi: 10.1016/j.compscitech.2007.11.016 [5] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734.MA X Y, LIANG H Y, WANG L F. Mechanical properties of three-dimensional printed shell biomimetic structures [J]. Science Bulletin, 2016, 61(7): 728–734. [6] XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix [J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 111–132. doi: 10.1088/0965-0393/1/2/001 [7] HOSSEINI M R, TAHERI-BEHROOZ F, SALAMAT-TALAB M. Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface [J]. Polymer Testing, 2019, 78: 105943. doi: 10.1016/j.polymertesting.2019.105943 [8] HUA X G, LI H G, LU Y, et al. Interlaminar fracture toughness of glare laminates based on asymmetric double cantilever beam (ADCB) [J]. Composites Part B: Engineering, 2019, 163: 175–184. doi: 10.1016/j.compositesb.2018.11.040 [9] 宗要武. 基于内聚力模型的钢纤维水泥基材料界面性能分析 [D]. 重庆: 重庆大学, 2018: 23–27.ZONG Y W. Analysis of interfacial bonding properties of cement-based materials with steel fibers based on cohesive zone model [D]. Chongqing: Chongqing University, 2018: 23–27. [10] ALFARO M V C, SUIKER A S J, RENÉ D B, et al. Analysis of fracture and delamination in laminates using 3D numerical modelling [J]. Engineering Fracture Mechanics, 2009, 76(6): 761–780. doi: 10.1016/j.engfracmech.2008.09.002 [11] LIU Y, DER M F P, SLUYS L J. Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminate [J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 617–630. doi: 10.1016/j.tafmec.2018.07.004 [12] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展 [J]. 航空学报, 2019, 40(1): 509–522.ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates [J]. Acta Aeronauticaet Astronautica Sinica, 2019, 40(1): 509–522. [13] 寇剑锋, 徐绯, 郭家平, 等. 黏聚力模型破坏准则及其参数选取 [J]. 机械强度, 2011, 33(5): 714–718.KOU J F, XU F, GUO J P, et al. Failure criterion of cohesion model and its parameter selection [J]. Mechanical Strength, 2011, 33(5): 714–718. [14] American Society for Testing and Materials. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-01 [S]. West Conshohocken, PA: ASTM, 2007. [15] O’BRIEN T K, JOHNSTON W M, TOLAND G J. Mode II interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material: NASA/TM-2010-216838 [R]. Hampton, VA: NASA, 2010. [16] ARRESE A, BOYANO A I, DE G J, et al. A novel procedure to determine the cohesive law in DCB tests [J]. Composites Science and Technology, 2017, 152: 76–84. doi: 10.1016/j.compscitech.2017.09.012 [17] ARRESE A, INSAUSTI N, MUJIKA F, et al. A novel experimental procedure to determine the cohesive law in ENF tests [J]. Composites Science and Technology, 2019, 170: 42–50. doi: 10.1016/j.compscitech.2018.11.031