强点火作用下C3HF7对甲烷-空气爆炸的抑制

蔡闯 陈先锋 员亚龙 黄楚原 袁必和 代华明

蔡闯, 陈先锋, 员亚龙, 黄楚原, 袁必和, 代华明. 强点火作用下C3HF7对甲烷-空气爆炸的抑制[J]. 高压物理学报, 2020, 34(2): 025201. doi: 10.11858/gywlxb.20190826
引用本文: 蔡闯, 陈先锋, 员亚龙, 黄楚原, 袁必和, 代华明. 强点火作用下C3HF7对甲烷-空气爆炸的抑制[J]. 高压物理学报, 2020, 34(2): 025201. doi: 10.11858/gywlxb.20190826
CAI Chuang, CHEN Xianfeng, YUAN Yalong, HUANG Chuyuan, YUAN Bihe, DAI Huaming. Inhibition of Methane-Air Explosion by C3HF7 under Strong Ignition[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025201. doi: 10.11858/gywlxb.20190826
Citation: CAI Chuang, CHEN Xianfeng, YUAN Yalong, HUANG Chuyuan, YUAN Bihe, DAI Huaming. Inhibition of Methane-Air Explosion by C3HF7 under Strong Ignition[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025201. doi: 10.11858/gywlxb.20190826

强点火作用下C3HF7对甲烷-空气爆炸的抑制

doi: 10.11858/gywlxb.20190826
基金项目: 国家重点研发计划(2018YFC0810605);国家自然科学基金(51774221);武汉科技大学冶金矿产资源高效利用与造块湖北省重点实验室开放课题基金(2019ZY001)
详细信息
    作者简介:

    蔡 闯(1995-),男,硕士研究生,主要从事气体爆炸研究. E-mail: 1062778804@qq.com

    通讯作者:

    陈先锋(1975-),男,博士,教授,主要从事工业安全研究. E-mail: cxf618@whut.edu.cn

  • 中图分类号: O389

Inhibition of Methane-Air Explosion by C3HF7 under Strong Ignition

  • 摘要: 为解决瓦斯输送过程中的爆炸安全问题,探索寻找绿色环保且阻火性能优越的新型抑爆剂,开展了当量比下甲烷-空气预混气体爆炸传播过程中的七氟丙烷抑爆效果研究。实验采用长径比L/D=108的水平管道爆炸特性测试系统,研究了在强点火作用下不同体积分数的七氟丙烷对9.5%甲烷-空气预混气体最大爆炸压力、最大压力上升速率和火焰传播速度的影响。实验结果显示:将2.5 m长的管段作为七氟丙烷抑爆区时,七氟丙烷阻断9.5%甲烷-空气预混气体爆炸火焰传播的最小体积分数为5%;当七氟丙烷的体积分数为1%~4%时,不仅无法阻断爆炸火焰的传播,而且与对照组相比,会使火焰传播速度加快;当七氟丙烷的体积分数为1%~6%时,爆炸源及管道末端处的爆炸压力峰值随着七氟丙烷体积分数的增加而逐渐减小;当七氟丙烷的体积分数为3%时,抑爆区处的爆炸压力峰值与对照组相比增幅为10.9%。

     

  • 图  水平管道爆炸特性测试系统

    Figure  1.  Horizontal pipeline explosion characteristic test system

    1. Compressed air bottle; 2. Gas distribution system; 3. Computer; 4. Detonating fuse head; 5. Vacuum pump; 6. Delay igniter; 7. Programmable logic controller; 8. Data collecting instrument; 9. Mass flow meter; 10. Heptafluoropropane cylinder; 11. High-speed camera; 12. Computer; 13. Exhaust vent.

    图  七氟丙烷浓度对9.5%甲烷-空气爆炸火焰传播过程的影响

    Figure  2.  Effect of heptafluoropropane concentration on 9.5% methane-air explosion flame propagation process

    图  七氟丙烷浓度为5%及6%时对甲烷-空气爆炸火焰传播过程的影响

    Figure  3.  Picture of effect of heptafluoropropane concentration of 5% and 6% on methane-air explosion flame propagation process

    图  不同七氟丙烷浓度下甲烷-空气预混气体最大爆炸压力

    Figure  4.  Pictures of maximum explosion pressure of methane-air mixture under different heptafluoropropane concentrations

    图  不同七氟丙烷浓度下甲烷-空气预混气体爆炸升压速率曲线

    Figure  5.  Explosion rate of pressure rise for methane-air premixed gas under different heptafluoropropane concentrations

    表  1  七氟丙烷体积对照表

    Table  1.   Heptafluoropropane volume comparison table

    Volume fraction of C3HF7/% Volume of the explosion suppression zone/L Volume of C3HF7/mL
    1 7.5 75
    2 7.5 150
    3 7.5 225
    4 7.5 300
    5 7.5 375
    6 7.5 450
    下载: 导出CSV

    表  2  不同七氟丙烷浓度下甲烷-空气预混气体爆炸最大爆炸升压速率

    Table  2.   Maximum rate of pressure rise of methane-air premixed gas explosion under different heptafluoropropane concentrations

    Volume fraction of C3HF7/% Maximum rate of
    pressure rise I/(MPa·s−1)
    Maximum rate of
    pressure rise II/(MPa·s−1)
    Maximum rate of
    pressure rise III/(MPa·s−1)
    0 2.416 2.309 2.413
    1 2.500 1.647 2.386
    2 2.367 2.203 2.046
    3 1.945 1.900 2.396
    4 1.925 1.840 2.010
    5 1.302 1.231 1.411
    6 1.385 1.313 1.346
    下载: 导出CSV
  • [1] 刘洋, 高文傲, 李登科, 等. 基于光纤传感技术的易燃易爆气体泄漏监测研究 [J]. 爆破, 2017, 34(4): 22–26. doi: 10.3963/j.issn.1001-487X.2017.04.005

    LIU Y, GAO W A, LI D K, et al. Research on flammable and explosive gas leakage monitoring based on optical fiber sensing technology [J]. Blasting, 2017, 34(4): 22–26. doi: 10.3963/j.issn.1001-487X.2017.04.005
    [2] 周立江, 范进,丁建国. 气云爆炸下钢筋混凝土板毁伤的数值分析 [J]. 爆破, 2017, 34(4): 143–148.

    ZHOU L J, FAN J,DING J G. Numerical analysis of damage of reinforced concrete slabs under gas cloud explosion [J]. Blasting, 2017, 34(4): 143–148.
    [3] LUO Z M, WANG T, TIAN Z H, et al. Experimental study on the suppression of gas explosion using the gas-solid suppressant of CO2 /ABC powder [J]. Journal of Loss Prevention in the Process Industries, 2014, 30: 17–23. doi: 10.1016/j.jlp.2014.04.006
    [4] WANG Z R, NI L, LIU X, et al. Effects of N2/CO2 on explosion characteristics of methane and air mixture [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 10–15. doi: 10.1016/j.jlp.2014.06.004
    [5] BENEDETTO A D, SARLI V D, SALZANO E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6970–6978. doi: 10.1016/j.ijhydene.2009.05.120
    [6] TANG C L, HUANG Z H, JIN C, et al. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2009, 34(1): 554–516. doi: 10.1016/j.ijhydene.2008.10.028
    [7] MOVILEANU C, RAZUS D, OANCEA D. Additive effects on the rate of pressure rise for ethylene-air deflagrations in closed vessels [J]. Fuel, 2013, 111: 194–200. doi: 10.1016/j.fuel.2013.04.053
    [8] 朱熹. 含氟灭火剂抑制瓦斯爆炸实验研究 [D]. 西安: 西安科技大学, 2017: 27–53.

    ZHU X. Experimental study on the inhibition of gas explosion by fluorine-containing fire extinguishing agent [D]. Xi’ an: Xi’ an University of Science and Technology, 2017: 27–53.
    [9] 薛少谦. 七氟丙烷抑制甲烷空气预混气体爆炸的实验研究 [J]. 矿业安全与环保, 2017, 44(1): 5–8. doi: 10.3969/j.issn.1008-4495.2017.01.002

    XUE S Q. Experimental study on heptafluoropropane inhibiting explosion of methane air premixed gas [J]. Mining Safety and Environmental Protection, 2017, 44(1): 5–8. doi: 10.3969/j.issn.1008-4495.2017.01.002
    [10] 任常兴, 张琰, 幕洋洋, 等. 氢氟烃类物质对丙烷抑爆特性实验研究 [J]. 消防科学与技术, 2018, 37(2): 229–231. doi: 10.3969/j.issn.1009-0029.2018.02.025

    REN C X, ZHANG Y, MU Y Y, et al. Experimental study on propane explosion suppression characteristics by hydrofluorocarbons [J]. Fire Science and Technology, 2018, 37(2): 229–231. doi: 10.3969/j.issn.1009-0029.2018.02.025
    [11] 李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究 [D]. 大连: 大连理工大学, 2018: 21–39.

    LI Y M. Experimental study on inhibition of methane-air explosion by heptafluoropropane [D]. Dalian: Dalian University of Technology, 2018: 21–39.
    [12] LI G C, WANG X S, XU H L, et al. Experimental study on explosion characteristics of ethanol gasoline–air mixture and its mitigation using heptafluoropropane [J]. Journal of Hazardous Materials, 2019, 378: 120711. doi: 10.1016/j.jhazmat.2019.05.104
    [13] 魏树旺, 蒋新生, 何标, 等. 七氟丙烷对狭长受限空间油气爆炸抑制实验研究 [J]. 中国安全生产科学技术, 2016, 12(7): 128–133.

    WEI S W, JIANG X S, HE B, et al. Experimental study on the inhibition of oil and gas explosion in narrow and confined space by heptafluoropropane [J]. China Safety Science and Technology, 2016, 12(7): 128–133.
    [14] 毛浩清, 黄炜超, 李斌, 等. 强点火条件下RP-3航空煤油燃爆特性实验研究 [J]. 高压物理学报, 2018, 32(2): 150–157.

    MAO H Q, HUANG W C, LI B, et al. Experimental study on explosion characteristics of RP-3 aviation kerosene under strong ignition [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 150–157.
    [15] 蒲龙. 七氟丙烷灭火系统特点及原理探讨 [J]. 石化技术, 2019, 26(4): 2–3.

    PU L. Discussion on characteristics and principle of heptafluoropropane fire extinguishing system [J]. Petrochemical Technology, 2019, 26(4): 2–3.
    [16] 马秋菊, 张奇, 庞磊. 甲烷-空气最小点火能量预测理论模型 [J]. 高压物理学报, 2012, 26(3): 301–305. doi: 10.11858/gywlxb.2012.03.009

    MA Q J, ZHANG Q, PANG L. Theoretical model of methane-air minimum ignition energy prediction [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 301–305. doi: 10.11858/gywlxb.2012.03.009
    [17] 陆诚, 吕晓东, 魏巍. 七氟丙烷灭火剂施放、流动及扩散过程的数值模拟 [J]. 化工进展, 2014, 33(Suppl 1): 74–78.

    LU C, LÜ X D, WEI W. Numerical simulation of the application, flow and diffusion process of heptafluoropropane fire extinguishing agent [J]. Chemical Industry and Engineering Progress, 2014, 33(Suppl 1): 74–78.
    [18] 高东志, 卫海桥, 周磊, 等. 封闭空间中火焰-冲击波相互作用及缸内压力波动现象分析 [J]. 红外与激光工程, 2017, 46(2): 38–43.

    GAO D Z, WEI H Q, ZHOU L, et al. Analysis of flame-shock wave interaction and pressure fluctuation in cylinder in closed space [J]. Infrared and Laser Engineering, 2017, 46(2): 38–43.
    [19] YU M G, WAN S J, ZHENG K, et al. Effect of side venting areas on the methane/air explosion characteristics in a pipeline [J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 123–130. doi: 10.1016/j.jlp.2018.03.010
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  7104
  • HTML全文浏览量:  3093
  • PDF下载量:  20
出版历程
  • 收稿日期:  2019-08-23
  • 修回日期:  2019-09-17
  • 发布日期:  2019-12-25

目录

    /

    返回文章
    返回