高压下HBT晶体的弹性性质

李佐 张凤玲 廖大麟

李佐, 张凤玲, 廖大麟. 高压下HBT晶体的弹性性质[J]. 高压物理学报, 2020, 34(4): 041301. doi: 10.11858/gywlxb.20190823
引用本文: 李佐, 张凤玲, 廖大麟. 高压下HBT晶体的弹性性质[J]. 高压物理学报, 2020, 34(4): 041301. doi: 10.11858/gywlxb.20190823
LI Zuo, ZHANG Fengling, LIAO Dalin. Elastic Properties of HBT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 041301. doi: 10.11858/gywlxb.20190823
Citation: LI Zuo, ZHANG Fengling, LIAO Dalin. Elastic Properties of HBT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 041301. doi: 10.11858/gywlxb.20190823

高压下HBT晶体的弹性性质

doi: 10.11858/gywlxb.20190823
基金项目: 贵州省科技厅、毕节市、贵州工程应用技术学院联合基金(LH[2014]7525);贵州省教育厅青年科技人才成长项目(KY[2018]398)
详细信息
    作者简介:

    李 佐(1983-),男,硕士,讲师,主要从事高压下含能材料物性研究. E-mail:lizuo212@163.com

  • 中图分类号: O521.21

Elastic Properties of HBT Crystal under High Pressure

  • 摘要: 采用基于密度泛函理论的第一性原理方法,研究了HBT晶体在常压和高压下的晶格常数和弹性性质及各向异性,利用3种不同理论模型研究了高压下HBT晶体的各向异性性质。研究结果表明:高压下HBT晶体的弹性常数和弹性模量显著增加,晶体表现出高压韧性;同时,高压下HBT晶体具有较大的弹性模量和力学各向异性,随着压强的增大,HBT晶体的各向异性程度减弱。此外,热力学性质计算结果表明,HBT晶体具有较高的德拜温度,并且德拜温度随着压强的增大而升高。

     

  • 图  优化后的HBT晶体几何结构

    Figure  1.  Geometric structure of optimized HBT crystal

    图  理论和实验得到的压强-体积比关系

    Figure  2.  Pressure as a function of volume ratio V/V0 from theoretical and experimental data

    图  弹性常数随压强的变化

    Figure  3.  Variations of elastic constant with pressure

    图  体弹、剪切和杨氏模量随压强的变化关系

    Figure  4.  Variations of bulk modulus B, shear modulus G and Young’s modulus E with pressure

    图  体弹模量和剪切模量之比与压强的关系

    Figure  5.  Pressure dependence of the ratio of bulk modulus and shear modulus

    图  不同压强下HBT晶体的声速和德拜温度

    Figure  6.  Compressional wave velocity, shear wave velocity and averaged wave velocity of HBT crystal under different pressures

    图  模量分数比与压强的关系

    Figure  7.  Pressure dependence of the fractional ratio of modulus

    图  AUAC的各向异性关系

    Figure  8.  Anisotropy diagram of the AU and AC

    图  AL随压强的变化关系

    Figure  9.  Pressure as a function of anisotropy index AL

    图  10  不同压强下剪切模量各向异性的二维投影

    Figure  10.  Anisotropic two-dimensional projection of shear modulus at different pressures

    表  1  HBT晶体晶格参数的计算值和实验值

    Table  1.   Calculated lattice parameters of HBT crystal along with experimental data

    Methoda/nmb/nmc/nmβ/(°)V/nm3
    Exp. [7]1.240 10.551 30.983 5115.570.606 69
    Exp. [21]1.241 50.551 70.984 2115.630.607 79
    This work1.211 20.697 01.038 8113.650.634 54
    下载: 导出CSV
  • [1] 范开敏, 杨莉, 孙庆强, 等. 六角相ErA x (A = H, He)体系弹性性质的第一性原理研究 [J]. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201

    FAN K M, YANG L, SUN Q Q, et al. First-principles study on elastic properties of hexagonal phase ErAx(A = H, He) [J]. Acta Physica Sinica, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [2] ANIRBAN P, CATALIN R P. Contribution of molecular flexibility to the elastic–plastic properties of molecular crystal α-RDX [J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(1): 015006. doi: 10.1088/1361-651X/25/1/015006
    [3] RYKOUNOV A A. Investigation of the pressure dependent thermodynamic and elastic properties of 1,3,5-triamino-2,4,6-trinitrobenzene using dispersion corrected density functional theory [J]. Journal of Applied Physics, 2015, 117(21): 215901. doi: 10.1063/1.4921815
    [4] LIAN D, LU L Y, WEI D Q. High-pressure behavior of β-HMX crystal studied by DFT-LDA [J]. Chinese Physics Letters, 2008, 25(3): 899–902. doi: 10.1088/0256-307X/25/3/026
    [5] WU Q, ZHU W H, XIAO H M. DFT study on crystalline 1,1-diamino-2,2-dintroethylene under high pressures [J]. Journal of Molecule Modeling, 2013, 19(9): 4039–4047. doi: 10.1007/s00894-013-1931-8
    [6] XU X J, ZHU W H, XIAO H M. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on epsilon-CL-20 crystal [J]. The Journal of Physical Chemistry B, 2007, 111(8): 2090–2097. doi: 10.1021/jp066833e
    [7] KLAPÖTKE T M, SABATE C M. Bistetrazoles: nitrogen-rich, high-performing, insensitive energetic compounds [J]. Chemistry of Materials, 2008, 20(11): 3629–3637. doi: 10.1021/cm703657k
    [8] KLAPÖTKE T M, SABATE C M. 5, 5′-Hydrazinebistetrazole: an oxidation-stable nitrogen-rich compound and starting material for the synthesis of 5, 5′-Azobistetrazolates [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2007, 633(15): 2671–2677. doi: 10.1002/zaac.200700271
    [9] KARAGHIOSOFF K, KLAPOTKE T M, SABATE C M. Nitrogen-rich compounds in pyrotechnics: alkaline earth metal salts of 5, 5′-Hydrazine-1, 2-diylbis(1H-tetrazole) [J]. European Journal of Inorganic Chemistry, 2009, 2: 238–250.
    [10] EBESPACHER M, KLAPOTKE T M, SABATE C M. Nitrogen-rich alkali metal 5, 5′-Hydrazinebistetrazolate salts: environmentally friendly compounds in pyrotechnic mixtures [J]. New Journal of Chemistry, 2009, 33: 517–527. doi: 10.1039/B818927G
    [11] DE LUCIA F C, GOTTFRIED J L. Characterization of a series of nitrogen-rich molecules using laser induced breakdown spectroscopy [J]. Propellants Explosives Pyrotechnics, 2010, 35(3): 268–277. doi: 10.1002/prep.201000009
    [12] GIANNOZZI P, ANDREUSSI O, BRUMME T, et al. Advanced capabilities for materials modelling with Quantum ESPRESSO [J]. Journal of Physics: Condensed Matter, 2017, 29(46): 465901. doi: 10.1088/1361-648X/aa8f79
    [13] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letter, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [14] PERDEW J P, BURKE K, ERNZERHOF M. Errata: generalized gradient approximation made simple [J]. Physical Review Letter, 1997, 78(7): 1396.
    [15] HAMANN D R. Optimized norm-conserving vanderbilt pseudopotentials [J]. Physical Review B, 2013, 88(8): 085117. doi: 10.1103/PhysRevB.88.085117
    [16] FLETCHER R. Practical methods of optimization [M]. New York: Wiley, 1980: 126−127.
    [17] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [18] CORSO D A. Pseudopotentials periodic table: from H to Pu [J]. Computational Materials Science, 2014, 95: 337–350. doi: 10.1016/j.commatsci.2014.07.043
    [19] CORSO D A. Elastic constants of beryllium: a first-principles investigation [J]. Journal of Physics: Condensed Matter, 2016, 28(7): 075401. doi: 10.1088/0953-8984/28/7/075401
    [20] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
    [21] CIEZAK-JENKINS J A, JENKINS T A. Shear induced weakening of the hydrogen bonding lattice of the energetic material 5,5′-Hydrazinebistetrazole at high-pressure [J]. Journal of Molecular Structure, 2017, 1129: 313–318. doi: 10.1016/j.molstruc.2016.09.084
    [22] BORN M. On the stability of crystal lattices. I [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1940, 36(2): 160–172. doi: 10.1017/S0305004100017138
    [23] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society (Section A), 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [24] PUGH S F. XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
    [25] 范航, 聂福德, 龙瑶, 等. 钝感高能炸药三氨基三硝基苯高温高压下热力学性质的分子动力学模拟研究 [J]. 物理学报, 2016, 65(6): 066201. doi: 10.7498/aps.65.066201

    FAN H, NIE F D, LONG Y, et al. A molecular dynamics simulation of thermodynamic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure and high temperature [J]. Acta Physica Sinica, 2016, 65(6): 066201. doi: 10.7498/aps.65.066201
    [26] ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants [J]. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909–917. doi: 10.1016/0022-3697(63)90067-2
    [27] 陈志谦, 林兴香, 李春梅. 硅化锆(ZrSi)弹性及其各向异性研究 [J]. 西南大学学报(自然科学版), 2016, 38(3): 1–8.

    CHEN Z Q, LIN X X, LI C M. Investigations of elasticity anisotropy of ZrSi [J]. Journal of Southwest University (Natural Science Edition), 2016, 38(3): 1–8.
    [28] CHUNG D H, BUESSEM W R. The elastic anisotropy of crystals [J]. Journal of Applied Physics, 1967, 38(5): 2010–2012. doi: 10.1063/1.1709819
    [29] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index [J]. Physical Review Letter, 2008, 101(5): 055504. doi: 10.1103/PhysRevLett.101.055504
    [30] TOHER C, PLATA J J, LEVY O, et al. High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model [J]. Physical Review B, 2014, 90(17): 174107. doi: 10.1103/PhysRevB.90.174107
    [31] GAILLAC R, PULLUMBI P, COUDERT F X. ELATE: an open-source online application for analysis and visualization of elastic tensors [J]. Journal of Physics: Condensed Matter, 2016, 28(27): 275201. doi: 10.1088/0953-8984/28/27/275201
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  6002
  • HTML全文浏览量:  2515
  • PDF下载量:  33
出版历程
  • 收稿日期:  2019-08-19
  • 修回日期:  2019-09-20

目录

    /

    返回文章
    返回