Effects of Metal Interlayer and Air Gap on the Shock Initiation of Insensitive Explosives
-
摘要: 为了确定空气间隙和金属隔层对冲击起爆的影响,采用火炮加载蓝宝石飞片冲击起爆
$\varnothing $ 50 mm × 30 mm的A型炸药,产生的冲击波通过空气间隙和金属隔层起爆$\varnothing $ 50 mm的台阶型B型炸药。在B型炸药的后界面粘贴镀膜氟化锂(LiF)窗口,使用光子多普勒测速仪(PDV)测量金属和B型炸药的后界面速度,进而计算得到金属和B型炸药的冲击波透射压力,再利用阻抗匹配计算得到金属和B型炸药的入射压力。结果表明:传爆药和金属隔层间的空气间隙使冲击压缩过程转变为准等熵压缩和冲击压缩两个过程,同时使冲击波的幅值减小;确定了金属隔层厚度为5 mm时冲击波压力的衰减范围;当使用A型炸药作为传爆药,空气间隙为0.3 mm,金属隔层厚度为5 mm时,B型炸药在7~10 mm之间开始反应。-
关键词:
- 金属隔层 /
- 空气间隙 /
- 冲击起爆 /
- 光子多普勒测速仪(PDV) /
- 台阶型炸药
Abstract: The influences of air gap and metal interlayer on the shock initiation of the$\varnothing $ 50 mm stepped explosive B have been investigated by means of the sapphire flyer planar impact experiment and photonic doppler velocimetry (PDV) technique. In the experiment, a lithium fluoride (LiF) window was stuck to the rear interface of explosive sample to allow the rear interface velocity between the metal and the sample explosive be measured by PDV technique. Both the transmission shock pressure and the incident shock pressure can be obtained by the impedance-match method. The experiment results have shown that the air gap divided the impact compression process into quasi-isentropic compression and impact compression, respectively, and at the same time, the amplitude of the shock pressure was declined. Specifically, the shock wave attenuation range caused by 5 mm thick metal was achieved. When the explosive A was used as the booster, and with a 0.3 mm thick air gap and 5 mm thick metal experimental setup, the reaction of sample explosive B started in a range from 7 mm to 10 mm.-
Key words:
- metal interlayer /
- air gap /
- shock initiation /
- photonic doppler velocimetry /
- stepped explosive
-
表 1 实验条件
Table 1. Experimental conditions
Shot No. Dimensions/(mm × mm) Sample Booster Air gap Metal compartment Air gap 01 $\varnothing$50 × 30 $\varnothing $50 × 30 $\varnothing $50 × 5 02 $\varnothing $50 × 30 $\varnothing $50 × 30 $\varnothing $50 × 5 03 $\varnothing $50 × 30 $\varnothing $50 × 30 $\varnothing $50 × 5 $\varnothing $50 × 0.22 Explosive B 04 $\varnothing $50 × 30 $\varnothing $50 × 30 $\varnothing $50 × 5 Explosive B 表 2 A型炸药和JWL状态方程参数[14]
Table 2. Parameters of explosive A and JWL equation of state
A/GPa B/GPa R1 R2 $\overline \omega $ ρ1/(g·cm–3) Dj/(km·s–1) uj/(km·s–1) cj/(km·s–1) pj/GPa 934.770 12.723 4.6 1.1 0.37 1.863 8.87 2.22 6.65 36.8 表 3 第1次和第2次金属自由界面速度测试计算结果
Table 3. Computation results of the first and second test for free surface velocities of metal
Shot No. u2/(km·s–1) D2/(km·s–1) p2in/ GPa p2out/ GPa Shot No. u2/(km·s–1) D2/(km·s–1) p2in/ GPa p2out/ GPa 01 1.061 4.703 68.828 45.675 02 0.982 4.654 68.828 41.817 1.113 4.734 68.828 48.193 1.058 4.700 68.828 45.490 0.935 4.625 68.828 39.554 1.125 4.742 68.828 48.804 1.118 4.738 68.828 48.475 1.182 4.777 68.828 51.644 1.133 4.746 68.828 49.181 1.095 4.723 68.828 47.304 表 4 金属自由界面速度测试
Table 4. Test of free surface velocities of metal
Shot No. p2in/GPa p2out/GPa η1/% 01 67.230 45.675 67.94 67.230 48.193 71.68 67.230 39.554 58.83 67.230 48.475 72.10 67.230 49.181 73.15 67.230 47.304 70.04 02 67.230 41.817 62.20 67.230 45.490 67.66 67.230 48.804 72.59 67.230 51.644 76.82 表 5 起跳间隔时间
Table 5. Interval between two accelerations
Step thickness/mm Interval/μs 1st test 2nd test 2 0.760 0.559 3 0.900 0.882 4 1.335 1.300 5 1.625 1.629 -
[1] 姬广富. 高能钝感炸药分子和晶体的结构和性能的理论研究 [D]. 南京: 南京理工大学, 2002.JI G F. Theoretical study on the structure and properties of molecules and crystalline of insensitive high explosives [D]. Nanjing: Nanjing University of Science and Technology, 2002. [2] 章冠人. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1991.ZHANG G R. Initiation kinetics of condensed explosives [M]. Beijing: National Defense Industry Press, 1991. [3] 陈朗, 伍俊英, 方青, 等. 固体炸药冲击起爆研究 [J]. 火炸药学报, 2004, 27(1): 1–4. doi: 10.3969/j.issn.1007-7812.2004.01.001CHEN L, WU J Y, FANG Q, et al. Investigation of solid explosives initiation under shock waves [J]. Chinese Journal of Explosives & Propellants, 2004, 27(1): 1–4. doi: 10.3969/j.issn.1007-7812.2004.01.001 [4] 胡湘渝, 黄风雷, 张德良. 铸装B炸药的隔板实验数值模拟 [C]//全国计算流体力学会议, 2000: 115–119.HU X Y, HUANG F L, ZHANG D L. Numerical simulation of separator experiment for cast B explosives [C]//National Conference on Computational Fluid Dynamics, 2000: 115–119. [5] 郑波, 袁鹏刚. 验证板反射冲击波对固体推进剂冲击起爆影响的实验研究 [J]. 固体火箭技术, 2014, 37(5): 734–736.ZHENG B, YUAN P G. Experimental study of influence of reflected shock from witness plate on propellant SDT [J]. Journal of Solid Rocket Technology, 2014, 37(5): 734–736. [6] 向梅, 黄毅民, 饶国宁, 等. 复合装药结构隔板实验与数值模拟 [J]. 兵工学报, 2013, 34(2): 246–250.XIANG M, HUANG Y M, RAO G N, et al. Experimental and numerical simulation study of the shockwave sensitivity of composite charge explosive [J]. Acta Armamentarii, 2013, 34(2): 246–250. [7] 蔡进涛, 王桂吉, 赵剑衡, 等. 固体炸药的磁驱动准等熵压缩实验研究 [J]. 高压物理学报, 2010, 24(6): 455–460. doi: 10.11858/gywlxb.2010.06.009CAI J T, WANG G J, ZHAO J H, et al. Magnetically driven quasi-isentropic compression experiments of solid explosives [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 455–460. doi: 10.11858/gywlxb.2010.06.009 [8] GUSTAVSEN R L, DATTELBAUM D M, SHEFFIELD S A, et al. Application of photonic Doppler velocimetry (PDV) to shock and detonation physics experiments: LA-UR-11-00886 [R]. Los Alamos, NM (United States): Los Alamos National Laboratory, 2011. [9] SARGIS P D, MOLAU N E, SWEIDER D, et al. Photonic Doppler velocimetry: UCRL-ID-133075 [R]. Livermore: Lawrence Livermore National Laboratory, 1999. [10] 李建中, 王德田, 刘俊, 等. 多点光子多普勒测速仪及其在爆轰物理领域的应用 [J]. 红外与激光工程, 2016, 45(4): 0422001.LI J Z, WANG D T, LIU J, et al. Multi-channel photonic Doppler velocimetry and its application in the field of explosion physics [J]. Infrared and Laser Engineering, 2016, 45(4): 0422001. [11] 奥尔连科 Л П. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.OРЛЕНКО Л П. Explosive physics [M]. Translated by SUN C W. Beijing: Science Press, 2011. [12] 王礼立. 应力波基础 [M]. 第2版. 北京: 国防工业出版社, 2005.WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: Defense Industry Press, 2005. [13] 张震宇, 田占东, 陈军, 等. 爆轰物理 [M]. 长沙: 国防科技大学出版社, 2016.ZHANG Z Y, TIAN Z D, CHEN J, et al. Detonation physics [M]. Changsha: National University of Defense Technology Press, 2016. [14] 向梅, 黄毅民, 韩勇, 等. JO-9159与JB-9014复合药柱爆轰驱动平面飞片实验与数值模拟 [J]. 高压物理学报, 2014, 28(3): 379–384. doi: 10.11858/gywlxb.2014.03.018XIANG M, HUANG Y M, HAN Y, et al. Experimental study and numerical simulation of plane flyer driven by detonation of JO-9159 and JB-9014 composite charge [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 379–384. doi: 10.11858/gywlxb.2014.03.018 [15] 刘俊明, 张旭, 赵康, 等. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数 [J]. 高压物理学报, 2018, 32(5): 051301.LIU J M, ZHANG X, ZHAO K, et al. Using PVDF gauge to study Grüneisen parameter of unreacted JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301.