金属隔层和空气间隙对钝感炸药冲击起爆的影响

彭文杨 钟斌 谷岩 张旭 杨舒棋 舒俊翔 覃双

彭文杨, 钟斌, 谷岩, 张旭, 杨舒棋, 舒俊翔, 覃双. 金属隔层和空气间隙对钝感炸药冲击起爆的影响[J]. 高压物理学报, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816
引用本文: 彭文杨, 钟斌, 谷岩, 张旭, 杨舒棋, 舒俊翔, 覃双. 金属隔层和空气间隙对钝感炸药冲击起爆的影响[J]. 高压物理学报, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816
PENG Wenyang, ZHONG Bin, GU Yan, ZHANG Xu, YANG Shuqi, SHU Junxiang, QIN Shuang. Effects of Metal Interlayer and Air Gap on the Shock Initiation of Insensitive Explosives[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816
Citation: PENG Wenyang, ZHONG Bin, GU Yan, ZHANG Xu, YANG Shuqi, SHU Junxiang, QIN Shuang. Effects of Metal Interlayer and Air Gap on the Shock Initiation of Insensitive Explosives[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816

金属隔层和空气间隙对钝感炸药冲击起爆的影响

doi: 10.11858/gywlxb.20190816
基金项目: 国防技术基础科研项目(JSZL2016212C001);科学挑战专题(TZ2018001);军科委基础加强重点项目(2019-JCJQ-ZD-203)
详细信息
    作者简介:

    彭文杨(1994-),男,硕士研究生,主要从事冲击起爆研究. E-mail: 1028981796@qq.com

    通讯作者:

    谷 岩(1963-),男,研究员,主要从事爆轰物理研究. E-mail: guyan@caep.cn

  • 中图分类号: O383

Effects of Metal Interlayer and Air Gap on the Shock Initiation of Insensitive Explosives

  • 摘要: 为了确定空气间隙和金属隔层对冲击起爆的影响,采用火炮加载蓝宝石飞片冲击起爆$\varnothing $50 mm × 30 mm的A型炸药,产生的冲击波通过空气间隙和金属隔层起爆$\varnothing $50 mm的台阶型B型炸药。在B型炸药的后界面粘贴镀膜氟化锂(LiF)窗口,使用光子多普勒测速仪(PDV)测量金属和B型炸药的后界面速度,进而计算得到金属和B型炸药的冲击波透射压力,再利用阻抗匹配计算得到金属和B型炸药的入射压力。结果表明:传爆药和金属隔层间的空气间隙使冲击压缩过程转变为准等熵压缩和冲击压缩两个过程,同时使冲击波的幅值减小;确定了金属隔层厚度为5 mm时冲击波压力的衰减范围;当使用A型炸药作为传爆药,空气间隙为0.3 mm,金属隔层厚度为5 mm时,B型炸药在7~10 mm之间开始反应。

     

  • 图  样品架

    Figure  1.  Sample holder

    图  装置示意图

    Figure  2.  Schematic of the experimental set-up

    图  台阶型炸药

    Figure  3.  Stage explosive

    图  金属自由界面速度

    Figure  4.  Free surface velocities of metal

    图  金属自由界面速度局部放大

    Figure  5.  Local details for free surface velocities of metal

    图  炸药样品界面速度剖面

    Figure  6.  Interface velocities of the sample explosive

    图  不同厚度样品的界面速度对比

    Figure  7.  Interface velocities comparison of the sample with different thicknesses

    图  波系图

    Figure  8.  Wave interaction diagram

    表  1  实验条件

    Table  1.   Experimental conditions

    Shot No.Dimensions/(mm × mm)Sample
    BoosterAir gapMetal compartmentAir gap
    01$\varnothing$50 × 30$\varnothing $50 × 30$\varnothing $50 × 5
    02$\varnothing $50 × 30$\varnothing $50 × 30$\varnothing $50 × 5
    03$\varnothing $50 × 30$\varnothing $50 × 30$\varnothing $50 × 5$\varnothing $50 × 0.22Explosive B
    04$\varnothing $50 × 30$\varnothing $50 × 30$\varnothing $50 × 5Explosive B
    下载: 导出CSV

    表  2  A型炸药和JWL状态方程参数[14]

    Table  2.   Parameters of explosive A and JWL equation of state

    A/GPaB/GPaR1R2$\overline \omega $ρ1/(g·cm–3)Dj/(km·s–1)uj/(km·s–1)cj/(km·s–1)pj/GPa
    934.77012.7234.61.10.371.8638.872.226.6536.8
    下载: 导出CSV

    表  3  第1次和第2次金属自由界面速度测试计算结果

    Table  3.   Computation results of the first and second test for free surface velocities of metal

    Shot No.u2/(km·s–1)D2/(km·s–1)p2in/ GPap2out/ GPaShot No.u2/(km·s–1)D2/(km·s–1)p2in/ GPap2out/ GPa
    011.0614.70368.82845.675020.9824.65468.82841.817
    1.1134.73468.82848.1931.0584.70068.82845.490
    0.9354.62568.82839.5541.1254.74268.82848.804
    1.1184.73868.82848.4751.1824.77768.82851.644
    1.1334.74668.82849.181
    1.0954.72368.82847.304
    下载: 导出CSV

    表  4  金属自由界面速度测试

    Table  4.   Test of free surface velocities of metal

    Shot No.p2in/GPap2out/GPaη1/%
    0167.23045.67567.94
    67.23048.19371.68
    67.23039.55458.83
    67.23048.47572.10
    67.23049.18173.15
    67.23047.30470.04
    0267.23041.81762.20
    67.23045.49067.66
    67.23048.80472.59
    67.23051.64476.82
    下载: 导出CSV

    表  5  起跳间隔时间

    Table  5.   Interval between two accelerations

    Step thickness/mmInterval/μs
    1st test2nd test
    20.7600.559
    30.9000.882
    41.3351.300
    51.6251.629
    下载: 导出CSV
  • [1] 姬广富. 高能钝感炸药分子和晶体的结构和性能的理论研究 [D]. 南京: 南京理工大学, 2002.

    JI G F. Theoretical study on the structure and properties of molecules and crystalline of insensitive high explosives [D]. Nanjing: Nanjing University of Science and Technology, 2002.
    [2] 章冠人. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1991.

    ZHANG G R. Initiation kinetics of condensed explosives [M]. Beijing: National Defense Industry Press, 1991.
    [3] 陈朗, 伍俊英, 方青, 等. 固体炸药冲击起爆研究 [J]. 火炸药学报, 2004, 27(1): 1–4. doi: 10.3969/j.issn.1007-7812.2004.01.001

    CHEN L, WU J Y, FANG Q, et al. Investigation of solid explosives initiation under shock waves [J]. Chinese Journal of Explosives & Propellants, 2004, 27(1): 1–4. doi: 10.3969/j.issn.1007-7812.2004.01.001
    [4] 胡湘渝, 黄风雷, 张德良. 铸装B炸药的隔板实验数值模拟 [C]//全国计算流体力学会议, 2000: 115–119.

    HU X Y, HUANG F L, ZHANG D L. Numerical simulation of separator experiment for cast B explosives [C]//National Conference on Computational Fluid Dynamics, 2000: 115–119.
    [5] 郑波, 袁鹏刚. 验证板反射冲击波对固体推进剂冲击起爆影响的实验研究 [J]. 固体火箭技术, 2014, 37(5): 734–736.

    ZHENG B, YUAN P G. Experimental study of influence of reflected shock from witness plate on propellant SDT [J]. Journal of Solid Rocket Technology, 2014, 37(5): 734–736.
    [6] 向梅, 黄毅民, 饶国宁, 等. 复合装药结构隔板实验与数值模拟 [J]. 兵工学报, 2013, 34(2): 246–250.

    XIANG M, HUANG Y M, RAO G N, et al. Experimental and numerical simulation study of the shockwave sensitivity of composite charge explosive [J]. Acta Armamentarii, 2013, 34(2): 246–250.
    [7] 蔡进涛, 王桂吉, 赵剑衡, 等. 固体炸药的磁驱动准等熵压缩实验研究 [J]. 高压物理学报, 2010, 24(6): 455–460. doi: 10.11858/gywlxb.2010.06.009

    CAI J T, WANG G J, ZHAO J H, et al. Magnetically driven quasi-isentropic compression experiments of solid explosives [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 455–460. doi: 10.11858/gywlxb.2010.06.009
    [8] GUSTAVSEN R L, DATTELBAUM D M, SHEFFIELD S A, et al. Application of photonic Doppler velocimetry (PDV) to shock and detonation physics experiments: LA-UR-11-00886 [R]. Los Alamos, NM (United States): Los Alamos National Laboratory, 2011.
    [9] SARGIS P D, MOLAU N E, SWEIDER D, et al. Photonic Doppler velocimetry: UCRL-ID-133075 [R]. Livermore: Lawrence Livermore National Laboratory, 1999.
    [10] 李建中, 王德田, 刘俊, 等. 多点光子多普勒测速仪及其在爆轰物理领域的应用 [J]. 红外与激光工程, 2016, 45(4): 0422001.

    LI J Z, WANG D T, LIU J, et al. Multi-channel photonic Doppler velocimetry and its application in the field of explosion physics [J]. Infrared and Laser Engineering, 2016, 45(4): 0422001.
    [11] 奥尔连科 Л П. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.

    OРЛЕНКО Л П. Explosive physics [M]. Translated by SUN C W. Beijing: Science Press, 2011.
    [12] 王礼立. 应力波基础 [M]. 第2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: Defense Industry Press, 2005.
    [13] 张震宇, 田占东, 陈军, 等. 爆轰物理 [M]. 长沙: 国防科技大学出版社, 2016.

    ZHANG Z Y, TIAN Z D, CHEN J, et al. Detonation physics [M]. Changsha: National University of Defense Technology Press, 2016.
    [14] 向梅, 黄毅民, 韩勇, 等. JO-9159与JB-9014复合药柱爆轰驱动平面飞片实验与数值模拟 [J]. 高压物理学报, 2014, 28(3): 379–384. doi: 10.11858/gywlxb.2014.03.018

    XIANG M, HUANG Y M, HAN Y, et al. Experimental study and numerical simulation of plane flyer driven by detonation of JO-9159 and JB-9014 composite charge [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 379–384. doi: 10.11858/gywlxb.2014.03.018
    [15] 刘俊明, 张旭, 赵康, 等. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数 [J]. 高压物理学报, 2018, 32(5): 051301.

    LIU J M, ZHANG X, ZHAO K, et al. Using PVDF gauge to study Grüneisen parameter of unreacted JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  8788
  • HTML全文浏览量:  3667
  • PDF下载量:  42
出版历程
  • 收稿日期:  2019-07-27
  • 修回日期:  2019-08-30
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回