金属锡Rayleigh-Taylor不稳定性对模型参数敏感性的数值分析

王涛 汪兵 林健宇 柏劲松 李平 钟敏 陶钢

王涛, 汪兵, 林健宇, 柏劲松, 李平, 钟敏, 陶钢. 金属锡Rayleigh-Taylor不稳定性对模型参数敏感性的数值分析[J]. 高压物理学报, 2020, 34(2): 022301. doi: 10.11858/gywlxb.20190813
引用本文: 王涛, 汪兵, 林健宇, 柏劲松, 李平, 钟敏, 陶钢. 金属锡Rayleigh-Taylor不稳定性对模型参数敏感性的数值分析[J]. 高压物理学报, 2020, 34(2): 022301. doi: 10.11858/gywlxb.20190813
WANG Tao, WANG Bing, LIN Jianyu, BAI Jingsong, LI Ping, ZHONG Min, TAO Gang. Numerical Analysis of Sensitivity of Tin Rayleigh-Taylor Instability to Model Parameters[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 022301. doi: 10.11858/gywlxb.20190813
Citation: WANG Tao, WANG Bing, LIN Jianyu, BAI Jingsong, LI Ping, ZHONG Min, TAO Gang. Numerical Analysis of Sensitivity of Tin Rayleigh-Taylor Instability to Model Parameters[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 022301. doi: 10.11858/gywlxb.20190813

金属锡Rayleigh-Taylor不稳定性对模型参数敏感性的数值分析

doi: 10.11858/gywlxb.20190813
基金项目: 国家自然科学基金(11702272,11532012,11932018);科学挑战专题(TZ2016001)
详细信息
    作者简介:

    王 涛(1979-),男,硕士,副研究员,主要从事计算力学研究. E-mail:wtao_mg@163.com

    通讯作者:

    柏劲松(1968-),男,博士,研究员,主要从事计算流体力学研究. E-mail:bjsong@foxmail.com

  • 中图分类号: O357; O344.3

Numerical Analysis of Sensitivity of Tin Rayleigh-Taylor Instability to Model Parameters

  • 摘要: 利用自研的爆轰与冲击动力学欧拉计算程序和Steinberg-Guinan(SG)本构模型,数值模拟分析了样品初始参数(初始振幅、初始波长、样品初始厚度)和SG本构模型初始参数对爆轰驱动锡Rayleigh-Taylor(RT)不稳定性增长的影响。结果表明金属锡样品的初始参数对其RT不稳定性增长有很大的影响。RT不稳定性增长随着初始振幅的减小而减小,且存在一个截止初始振幅;存在一个最不稳定的模态(波长),当初始波长大于该波长时,RT不稳定性增长随着初始波长的减小而增大,反之,RT不稳定性增长随着初始波长的减小而减小;样品厚度的增大可以抑制RT不稳定性增长,而且存在一个样品截止厚度。金属锡的RT不稳定性增长对其SG本构模型应变硬化系数和应变硬化指数的变化不敏感,而对压力硬化系数和热软化系数比较敏感。从采用扰动增长法预估材料强度的角度来说,修正压力硬化系数以获得锡合理的材料强度是合理的途径。

     

  • 图  二维计算模型

    Figure  1.  Two dimensional computational model

    图  Lindquist等爆轰驱动铝实验的扰动振幅比较

    Figure  2.  Comparison of perturbation amplitudes of Lindquist et al.’s experiments driven by explosion

    图  不同网格尺寸时的加载压力剖面

    Figure  3.  Loading pressure profiles for different grid size

    图  不同网格尺寸时的扰动振幅增长曲线

    Figure  4.  Perturbation amplitude growth for different grid size

    图  不同初始振幅时的扰动振幅增长曲线

    Figure  5.  Perturbation amplitude growth for different initial amplitude

    图  不同初始波长时的扰动振幅增长曲线

    Figure  6.  Perturbation amplitude growth for different initial wavelength

    图  不同样品初始厚度时的扰动振幅增长曲线

    Figure  7.  Perturbation amplitude growth for different initial thickness of sample

    图  应变硬化系数不同时的扰动振幅增长曲线

    Figure  8.  Perturbation amplitude growth for different strain hardening coefficient

    图  应变硬化指数不同时的扰动振幅增长曲线

    Figure  9.  Perturbation amplitude growth for different strain hardening exponent

    图  10  压力硬化系数不同时的扰动振幅增长曲线

    Figure  10.  Perturbation amplitude growth for different pressure hardening coefficient

    图  11  热软化系数不同时的扰动振幅增长曲线

    Figure  11.  Perturbation amplitude growth for different thermal softening coefficient

    表  1  JO-9159炸药JWL状态方程参数

    Table  1.   EOS parameters of JO-9159 explosive

    ρ0/(g·cm–3)pCJ/GPaDCJ/(km·s–1)α/GPaσ/GPaR1R2ω
    1.86368.862934.812.74.61.10.37
    下载: 导出CSV

    表  2  锡的Mie-Grüneisen状态方程参数

    Table  2.   Mie-Grüneisen EOS parameters of Sn

    ρ0/(g·cm–3)c/(km·s–1)γ0$\alpha $S1S2S3
    7.2872.612.180.471.5100
    下载: 导出CSV

    表  3  锡的SG本构模型参数

    Table  3.   SG constitutive model parameters of Sn

    Y0/GPaYmax/GPaG0/GPaβnA/GPa–1B/K–1
    0.160.2217.92 000.00.060.086 62.12×10–3
    下载: 导出CSV
  • [1] TAYLOR G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I [J]. Proceedings of the Royal Society of London Series A, 1950, 201(1065): 192–196.
    [2] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/cpa.3160130207
    [3] CAMPBELL E M, HUNT J T, BLISS E S, et al. Nova experimental facility [J]. Review of Scientific Instruments, 1986, 57(8): 2101–2106. doi: 10.1063/1.1138755
    [4] DIMONTE G, TERRONES G, CHERNE F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities [J]. Physical Review Letters, 2011, 107(26): 264502. doi: 10.1103/PhysRevLett.107.264502
    [5] PARK H S, LORENZ K T, CAVALLO R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate [J]. Physical Review Letters, 2010, 104(13): 135504. doi: 10.1103/PhysRevLett.104.135504
    [6] PARK H S, REMINGTON B A, BECKER R C, et al. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures [J]. Physics of Plasmas, 2010, 17(5): 056314. doi: 10.1063/1.3363170
    [7] NUCKOLLS J, WOOD L, THIESSEN A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications [J]. Nature, 1972, 239(5368): 139–142. doi: 10.1038/239139a0
    [8] MCCRORY R L, MONTIERTH L, MORSE R L, et al. Nonlinear evolution of ablation-driven Rayleigh-Taylor instability [J]. Physical Review Letters, 1981, 46(5): 336–339. doi: 10.1103/PhysRevLett.46.336
    [9] LINDL J D, MEAD W C. Two-dimensional simulation of fluid instability in laser-fusion pellets [J]. Physical Review Letters, 1975, 34(20): 1273–1276. doi: 10.1103/PhysRevLett.34.1273
    [10] KIFONIDIS K, PLEWA T, SCHECK L, et al. Non-spherical core collapse supernovae-II. the late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A [J]. Astronomy & Astrophysics, 2006, 453(2): 661–678.
    [11] MAC LOW M M, ZAHNLE K. Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere [J]. The Astrophysical Journal, 1994, 434: L33–L36. doi: 10.1086/187565
    [12] SHUVALOV V V, ARTEMIEVA N A. Numerical modeling of Tunguska-like impacts [J]. Planetary and Space Science, 2002, 50(2): 181–192. doi: 10.1016/S0032-0633(01)00079-4
    [13] KAUS B J P, PODLADCHIKOV Y Y. Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability [J]. Geophysical Research Letters, 2001, 28(6): 1095–1098. doi: 10.1029/2000GL011789
    [14] MOLNAR P, HOUSEMAN G A, CONRAD C P. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer [J]. Geophysical Journal International, 1998, 133(3): 568–584. doi: 10.1046/j.1365-246X.1998.00510.x
    [15] MILES J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335 [R]. 1966.
    [16] WHITE G N. A one degree of freedom model for the Tayloy instability of an ideally plastic metal plate: LA-5225-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1973.
    [17] ROBINSON A C, SWEGLE J W. Acceleration instability in elastic-plastic solids. II. analytical techniques [J]. Journal of Applied Physics, 1989, 66(7): 2859–2872. doi: 10.1063/1.344191
    [18] PIRIZ A R, CELA J J L, CORTAZAR O D, et al. Rayleigh-Taylor instability in elastic solids [J]. Physical Review E, 2005, 72(5): 056313. doi: 10.1103/PhysRevE.72.056313
    [19] PIRIZ A R, LÓPEZ CELA J J, TAHIR N A. Rayleigh-Taylor instability in elastic-plastic solids [J]. Journal of Applied Physics, 2009, 105(11): 116101. doi: 10.1063/1.3139267
    [20] PIRIZ A R, CELA J J L, TAHIR N A. Linear analysis of incompressible Rayleigh-Taylor instability in solids [J]. Physical Review E, 2009, 80(4): 046305. doi: 10.1103/PhysRevE.80.046305
    [21] BAI X B, WANG T, ZHU Y X, et al. Expansion of linear analysis of Rayleigh-Taylor interface instability of metal materials [J]. World Journal of Mechanics, 2018, 8(4): 94–106. doi: 10.4236/wjm.2018.84008
    [22] BARNES J F, BLEWETT P J, MCQUEEN R G, et al. Taylor instability in solids [J]. Journal of Applied Physics, 1974, 45(2): 727–732. doi: 10.1063/1.1663310
    [23] LORENZ K T, EDWARDS M J, GLENDINNING S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter [J]. Physics of Plasmas, 2005, 12(5): 056309. doi: 10.1063/1.1873812
    [24] BARNES J F, JANNEY D H, LONDON R K, et al. Further experimentation on Taylor instability in solids [J]. Journal of Applied Physics, 1980, 51(9): 4678–4679. doi: 10.1063/1.328339
    [25] LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2007.
    [26] DE FRAHAN M T H, BELOF J L, CAVALLO R M, et al. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability [J]. Journal of Applied Physics, 2015, 117(22): 225901. doi: 10.1063/1.4922336
    [27] WANG T, BAI J S, CAO R Y, et al. Numerical investigations of perturbation growth in aluminum flyer driven by explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301.
    [28] OLSON R T, CERRETA E K, MORRIS C, et al. The effect of microstructure on Rayleigh-Taylor instability growth in solids [J]. Journal of Physics: Conference Series, 2014, 500(11): 112048. doi: 10.1088/1742-6596/500/11/112048
    [29] 何长江, 周海兵, 杭义洪. 爆轰驱动金属铝界面不稳定性的数值分析 [J]. 中国科学G辑, 2009, 39(9): 1170–1173.

    HE C J, ZHOU H B, HANG Y H. Numerical study on the instability of metal Al driven by detonation [J]. Science in China (Series G), 2009, 39(9): 1170–1173.
    [30] 郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析 [J]. 爆炸与冲击, 2016, 36(6): 739–744. doi: 10.11883/1001-1455(2016)06-0739-06

    HAO P C, FENG Q J, HU X M. A numerical study of the instability of the metal shell in the implosion [J]. Explosion and Shock Waves, 2016, 36(6): 739–744. doi: 10.11883/1001-1455(2016)06-0739-06
    [31] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201

    LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [32] SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 056303. doi: 10.1063/1.3333505
    [33] MCBRIDE R D, SLUTZ S A, JENNINGS C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator [J]. Physical Review Letters, 2012, 109(13): 135004. doi: 10.1103/PhysRevLett.109.135004
    [34] PARK H S, ARSENLIS A, BARTON N R. Stabilization of the Rayleigh-Taylor instability by material strength at high pressure and high strain rates [C]//16th International Workshop on the Physics of Compressible Turbulent Mixing. Marseilles, France, 2018.
    [35] REMINGTON B A, PARK H S, PRISBREY S T, et al. Progress towards materials science above 1 000 GPa (10 Mbar) on the NIF laser: LLNL-CONF-411555 [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2009.
    [36] JENSEN B J, CHERNE F J, PRIME M B, et al. Jet formation in cerium metal to examine material strength [J]. Journal of Applied Physics, 2015, 118(19): 195903. doi: 10.1063/1.4935879
    [37] BELOF J L, CAVALLO R M, OLSON R T, et al. Rayleigh-Taylor strength experiments of the pressure-induced α→ε→α′ phase transition in iron [C]//AIP Conference Proceedings. American Institute of Physics, 2012, 1426(1): 1521–1524.
    [38] LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [C]//LEGRAND M, VANDENBOOMGAERDE M. 10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  8426
  • HTML全文浏览量:  3199
  • PDF下载量:  27
出版历程
  • 收稿日期:  2019-07-22
  • 修回日期:  2019-09-16

目录

    /

    返回文章
    返回