顶爆和拱腰侧爆同时作用下锚固洞室的动态响应

王光勇 曹安生 余锐 林加剑

王光勇, 曹安生, 余锐, 林加剑. 顶爆和拱腰侧爆同时作用下锚固洞室的动态响应[J]. 高压物理学报, 2020, 34(2): 025202. doi: 10.11858/gywlxb.20190812
引用本文: 王光勇, 曹安生, 余锐, 林加剑. 顶爆和拱腰侧爆同时作用下锚固洞室的动态响应[J]. 高压物理学报, 2020, 34(2): 025202. doi: 10.11858/gywlxb.20190812
WANG Guangyong, CAO Ansheng, YU Rui, LIN Jiajian. Dynamic Response of Anchorage Chamber under Simultaneous Explosion Load from Top and Side of Arch[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025202. doi: 10.11858/gywlxb.20190812
Citation: WANG Guangyong, CAO Ansheng, YU Rui, LIN Jiajian. Dynamic Response of Anchorage Chamber under Simultaneous Explosion Load from Top and Side of Arch[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025202. doi: 10.11858/gywlxb.20190812

顶爆和拱腰侧爆同时作用下锚固洞室的动态响应

doi: 10.11858/gywlxb.20190812
基金项目: 国家自然科学基金-山西煤基低碳联合基金重点项目(U1810203)
详细信息
    作者简介:

    王光勇(1977-),男,博士,副教授,主要从事岩土工程动载试验研究.E-mail: wgy2003@mail.ustc.edu.cn

  • 中图分类号: O383.2; TU457

Dynamic Response of Anchorage Chamber under Simultaneous Explosion Load from Top and Side of Arch

  • 摘要: 基于相似模型试验,采用显式非线性动力分析程序LS-DYNA3D研究了地下锚固洞室在拱顶和拱腰侧两处集中装药爆源同时爆炸作用下应力波传播规律、裂纹形成机理以及洞壁围岩位移分布特征。通过对比分析顶爆试验和计算模型的压应力时程曲线,发现模拟与试验结果吻合,且符合应力波的传播规律,表明数值模拟结果可靠。爆源爆炸后,应力波以圆形向周围岩体传播,两应力波相遇处压应力强度明显大于周围岩体;当应力波传到自由面时,会反射形成拉伸波,在地表下方和洞室上方发生“层裂”现象,在拱顶和拱腰侧爆源中间沿洞室径向有裂纹延伸,由于拉伸波的叠加,在爆源下方出现“八”字形的锥形裂纹面。锚杆能够起到加固岩体的作用,锚固洞室比毛洞裂纹分布少,毛洞迎爆侧裂纹主要为横向裂纹,而锚固洞室则为径向劈裂和横向裂纹。两爆源中点洞室径向处的洞壁围岩位移峰值最大,极易产生破坏。

     

  • 图  数值计算模型(单位: cm)

    Figure  1.  Model of numerical analysis (Unit: cm)

    图  模拟与实验岩体单元压应力时程曲线对比

    Figure  2.  Comparison of pressure curves of rock elements between numerical and experimental results

    图  应力波传播过程

    Figure  3.  Process of stress wave propagation

    图  单爆源作用下锚固洞室岩体单元压应力时程曲线

    Figure  4.  Time history curve of compressive stress of rock elements from anchorage chamber under single explosion

    图  拱顶和拱腰侧爆源同时起爆锚固洞室岩体单元压应力时程曲线

    Figure  5.  Time history curve of compressive stress of rock elements from anchorage chamber under explosion load from top and side of arch

    图  围岩裂纹分布情况

    Figure  6.  Crack distributions of surrounding rock

    图  洞壁位移(单位: mm)

    Figure  7.  Displacement of the cavern (Unit: mm)

    表  1  数值计算模型的材料参数[18]

    Table  1.   Material parameters for the analysis model[18]

    RockTNTRock bolt
    G/GPaK/GPapCJ/GPaDH/(m·s–1A/GPaB/GPaR1R2ωE0/GPaE/GPaμ
    0.8560.958276 9303717.434.150.950.37760.34
    下载: 导出CSV
  • [1] 何晶. 钱七虎:铸就中国坚不可摧的“地下钢铁长城” [J]. 中国报道, 2019(2): 60–61.

    HE J. QIAN Qihu:Casting Chinese indestructible “Underground Great Wall of Steel” [J]. China Report, 2019(2): 60–61.
    [2] 顾金才, 陈安敏, 徐景茂, 等. 在爆炸荷载条件下锚固洞室破坏形态对比试验研究 [J]. 岩石力学与工程学报, 2008, 27(7): 1315–1320. doi: 10.3321/j.issn:1000-6915.2008.07.003

    GU J C, CHEN A M, XU J M, et al. Model test study of failure patterns of anchored tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1315–1320. doi: 10.3321/j.issn:1000-6915.2008.07.003
    [3] 张向阳, 顾金才, 沈俊, 等. 爆炸荷载作用下洞室变形与锚杆受力分析 [J]. 地下空间与工程学报, 2012, 8(4): 678–684.

    ZHANG X Y, GU J C, SHEN J, et al. Tunnel deformation and bolt bearing state under explosion load [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 678–684.
    [4] 杨自友. 锚固洞室的抗爆性能研究 [D]. 合肥: 中国科学技术大学, 2008: 5–8.

    YANG Z Y. Study on the anti-detonating characteristics of underground opening reinforced by rockbolts [D]. Hefei: University of Science and Technology of China, 2008: 5–8.
    [5] 余永强, 顾金才, 杨小林, 等. 动载下洞室加固锚杆受力的实验研究 [J]. 兵工学报, 2009, 30(Suppl 2): 263–266.

    YU Y Q, GU J C, YANG X L, et al. Experimental study on applied force of reinforcement cavity rock bolts under dynamic loading conditions [J]. Acta Armamentarii, 2009, 30(Suppl 2): 263–266.
    [6] 马海春. 锚固洞室抗爆能力现场实验研究 [D]. 合肥: 中国科学技术大学, 2011: 25–32.

    MA H C. Research on explosion resistinhg capacity site tests of underground cavern reinforced by grouted rockbolts [D]. Hefei: University of Science and Technology of China, 2011: 25–32.
    [7] 徐景茂, 顾金才, 陈安敏, 等. 拱脚局部加长锚杆锚固洞室抗爆模型试验研究 [J]. 岩石力学与工程学报, 2012, 31(11): 2182–2186. doi: 10.3969/j.issn.1000-6915.2012.11.005

    XU J M, GU J C, CHEN A M, et al. Model test study of anti-explosion capacity of anchored tunnel with local lengthening anchors in arch springing [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2182–2186. doi: 10.3969/j.issn.1000-6915.2012.11.005
    [8] 徐干成, 袁伟泽, 顾金才, 等. 地下洞库围岩外加固抗炸弹爆炸性能研究 [J]. 岩石力学与工程学报, 2015, 34(9): 1767–1776.

    XU G C, YUAN W Z, GU J C, et al. Explosive resistivity of anchored cavern surface rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1767–1776.
    [9] 王光勇, 顾金才, 陈安敏, 等. 拱顶端部加密锚杆支护洞室抗爆加固效果模型试验研究 [J]. 岩土工程学报, 2009, 31(3): 378–383. doi: 10.3321/j.issn:1000-4548.2009.03.012

    WANG G Y, GU J C, CHEN A M, et al. Model tests on anti-explosion anchoring effect of tunnels reinforced by dense bolts at arch top [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 378–383. doi: 10.3321/j.issn:1000-4548.2009.03.012
    [10] 单仁亮, 周纪军, 夏宇, 等. 爆炸荷载下锚杆动态响应试验研究 [J]. 岩石力学与工程学报, 2011, 30(8): 1540–1546.

    SHAN R L, ZHOU J J, XIA Y, et al. Experimental investigation on dynamic response of rockbolt under blasting load [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1540–1546.
    [11] 王正义, 窦林名, 王桂峰. 动载作用下圆形巷道锚杆支护结构破坏机理研究 [J]. 岩土工程学报, 2015, 37(10): 1901–1909. doi: 10.11779/CJGE201510019

    WANG Z Y, DOU L M, WANG G F. Failure mechanism of anchored bolt supporting structure of circular roadway under dynamic load [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1901–1909. doi: 10.11779/CJGE201510019
    [12] 吴拥政, 陈金宇, 焦建康, 等. 冲击载荷作用下锚固围岩损伤破坏机制 [J]. 煤炭学报, 2018, 43(9): 2389–2397.

    WU Y Z, CHEN J Y, JIAO J K, et al. Damage and failure mechanism of anchored surrounding rock with impact loading [J]. Journal of China Coal Society, 2018, 43(9): 2389–2397.
    [13] RAJMENY K, SINGHB U K, SINHA B K P. Predicting rock failure around boreholes and drives adjacent to stopes in Indian mines in high stress regions [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(2): 151–164.
    [14] SINGH P K. Blast vibration damage to underground coal mines from adjacent open-pit blasting [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(8): 959–973.
    [15] HAGEDORN H. Dynamic rock bolt test and UDEC simulation for a large carven under shock load [C]//Proceeding of International UDEC/3DEC Symposium on Numerical Modeling of Discrete Materialsin Geotechnical Engineering, Civil Engineering, and Earth Sciences. Bochum, Germany, 2004: 191–197.
    [16] YUGO N, SHIN W. Analysis of blasting damage in adjacent mining excavations [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(3): 282–290. doi: 10.1016/j.jrmge.2014.12.005
    [17] DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43(6): 88–100.
    [18] 王光勇. 提高锚固洞室抗爆能力技术措施研究 [D]. 合肥: 中国科学技术大学, 2009: 92–93.

    WANG G Y. Technic study on enhancing the explosion resisting capacity of underground opening reinforced by rockbolts [D]. Hefei: University of Science and Technology of China, 2009: 92–93.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  8115
  • HTML全文浏览量:  3075
  • PDF下载量:  19
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-09-03
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回