Continuous Collapse Behavior of Frame Structures under Impact
-
摘要: 借助ANSYS/LS-DYNA软件建立了钢筋混凝土框架的有限元模型,研究了钢筋混凝土框架在冲击荷载作用下的连续性倒塌性能,冲击体质量为1 000 kg,冲击速度为4 m/s。通过对钢筋混凝土构件冲击试验和框架倒塌过程的验证,保证了数值模拟的有效性。分析结果表明:冲击中柱后结构倒塌过程中,有“拱作用”向“悬索作用”转换的机制,中柱顶部位移先向上后向下,边柱顶部位移先向外后向内;同样冲击作用下,柱轴力越小,则抗冲击能力越强,不同的偏压作用对柱的抗冲击性能的影响不同;加密柱箍筋能够增强钢筋混凝土柱的抗冲击能力,延缓甚至避免钢筋混凝土框架结构的连续性倒塌。Abstract: In order to study the continuous collapse behavior of reinforced concrete frame under impact load, the finite element model of reinforced concrete frame is established by ANSYS/LS-DYNA. The impact mass is 1 000 kg and the impact velocity is 4 m/s. The effectiveness of the numerical simulation is guaranteed by the verification of the of reinforced concrete members impact experiment and the frame collapse process. The analysis draws following conclusions: in the process of structure collapse of the mid column impacted, there is a mechanism of “arch effect” to “suspension effect”, the top of the middle column first goes up and then down, and the top of the side column first goes out and then inward; under the same impact load, the smaller the column axial force, the stronger column impact resistance and the column impact resistance is affected by different eccentric pressure. The impact resistance of reinforced concrete columns can be enhanced by infill column stirrups which can delay or even avoid the reinforced concrete frame structures continuous collapse.
-
Key words:
- reinforced concrete frame /
- continuous collapse /
- impact load
-
Parts Material model Material parameters Hammer *MAT_ELASTIC ρ = 7 800 kg/m3, E = 200 GPa, ν = 0.27 Concrete *MAT_CSCM ρ = 2 400 kg/m3, fc = 25 MPa, d = 20 mm Distributed reinforcement *MAT_PLASTIC_KINEMATIC ρ = 7 800 kg/m3, E = 200 GPa, ν = 0.27,
fy = 416 MPa, fu = 526 MPaStirrups *MAT_PLASTIC_KINEMATIC ρ = 7 800 kg/m3, E = 210 GPa, ν = 0.27,
fy = 370 MPa表 2 梁跨中最大位移比较
Table 2. Largest displacement comparison
Beam No. Maximum displacement/mm Relative error/% Experiment Simulation A-1 81.0 82.8 2.22 A-2 74.0 74.0 0 A-3 83.6 90.6 8.37 A-4 89.5 86.6 −3.24 表 3 不同失效时间对应的动力系数
Table 3. Dynamic coefficients at different failure time
t1/s μ t1/s μ t1/s μ t1/s μ 0.001 2.000 0.020 1.832 0.060 1.014 0.150 1.128 0.005 1.989 0.040 1.426 0.061 1.003 ∞ 1.000 0.010 1.956 0.045 1.314 0.090 1.215 表 4 框架倒塌范围汇总
Table 4. Summary of frame collapse scope
Column No. Collapse scope A No collapse B AB span and BC span C All D CD span and DE span E DE span -
[1] SOROUSHIAN P, CHOI K B. Steel mechanical properties at different strain rates [J]. Journal of Structural Engineering, 1987, 113(4): 663–672. doi: 10.1061/(ASCE)0733-9445(1987)113:4(663) [2] 李杰, 任晓丹. 混凝土静力与动力损伤本构模型研究进展述评 [J]. 力学进展, 2010, 40(3): 284–297. doi: 10.6052/1000-0992-2010-3-J2008-043LI J, REN X D. A review on the constitutive model for static and dynamic damage of concrete [J]. Advances in Mechanics, 2010, 40(3): 284–297. doi: 10.6052/1000-0992-2010-3-J2008-043 [3] DO T V, PHAM T M, HAO H. Dynamic responses and failure modes of bridge columns under vehicle collision [J]. Engineering Structures, 2018, 156(1): 243–259. [4] 刘飞, 罗旗帜, 严波, 等. RC柱破坏模式的数值模拟研究 [J]. 振动与冲击, 2017, 36(16): 122–127.LIU F, LUO Q Z, YAN B, et al. Numerical study on the failure of RC column subjected to lateral impact [J]. Journal of Vibration and Shock, 2017, 36(16): 122–127. [5] 史先达. 钢筋混凝土剪力墙平面外抗冲击性能试验与数值分析 [D]. 长沙: 湖南大学, 2016.SHI X D. Experiment and numerical analysis of reinforced concrete shear wall out-of-plane impact [D]. Changsha: Hunan University, 2016. [6] 宿华祥, 易伟建. 钢筋混凝土墙抗冲击性能数值模拟分析 [J]. 高压物理学报, 2019, 34(1): 014201. doi: 10.11858/gywlxb.20180532SU H X, YI W J. Numerical simulation analysis of impact resistance of reinforced concrete wall [J]. Chinese Journal of High Pressure Physics, 2019, 34(1): 014201. doi: 10.11858/gywlxb.20180532 [7] 陆新征, 江见鲸. 世界贸易中心飞机撞击后倒塌过程的仿真分析 [J]. 土木工程学报, 2001, 34(6): 8–10. doi: 10.3321/j.issn:1000-131X.2001.06.002LU X Z, JIANG J J. Dynamic finite element simulation for the collapse of world trade center [J]. China Civil Engineering Jounal, 2001, 34(6): 8–10. doi: 10.3321/j.issn:1000-131X.2001.06.002 [8] 何庆锋. 钢筋混凝土框架结构抗倒塌性能试验研究 [D]. 长沙: 湖南大学, 2009.HE Q F. Experimental study on collapse resistance of reinforced concrete frame structures [D]. Changsha: Hunan University, 2009. [9] JIAN H, ZHENG Y. Simplified models of progressice collapse response and progressive collapae-resisting capacity curve of RC beam-column substructures [J]. Journal of Performance of Constructed Facilities, 2014, 28(4): 1–7. [10] 李凤武. 钢筋混凝土框架柱突然失效试验研究 [D]. 长沙: 湖南大学, 2014.LI F W. Experimental study on sudden failure of reinforced concrete frame columns [D]. Changsha: Hunan University, 2014. [11] VAUGHAN D, MILNER D, GRAN J. New methods for progressive collapse testing and simulation [J]. Structures Congress 2011-Proceedings of the 2011 Structures Congress, 2011, 50(21): 2358–2369. [12] 罗维刚, 黑晓丹, 刘纪斌, 等. 考虑楼板影响的RC框架结构连续性倒塌动力响应分析 [J]. 建筑科学与工程学报, 2018, 35(4): 113–119. doi: 10.3969/j.issn.1673-2049.2018.04.015LUO W G, HEI X D, LIU J B, et al. Dynamic response analysis of RC frame structures with continuous collapse considering floor effects [J]. Journal of Architecture and Civil Engineering, 2018, 35(4): 113–119. doi: 10.3969/j.issn.1673-2049.2018.04.015 [13] KANG H, KIM J. Progressice collapse of steel moment frames subjected to vehicle impact [J]. Journal of Performance of Constructed Facilities, 2014, 29(6): 04014172. [14] SASANI M, KAZEMI A, SAGIROGLU S, et al. Progressive collapse resistance of an actual 11-story structure subjectied to severe initial damage [J]. Journal of Structural Engineering, 2011, 137(9): 893–902. doi: 10.1061/(ASCE)ST.1943-541X.0000418 [15] SASANI M, SAGIROGLU S. Progressive collapse resistance of hotel San Diego [J]. Journal of Structure Engineering, 2008, 134(3): 478–488. doi: 10.1061/(ASCE)0733-9445(2008)134:3(478) [16] WU Y, CRAWFORD J E, MAGALLANES J M. Performence of LS-DYNA concrete constitutive models [C]//12th International LS-DYNA Users Conference, 2012(1): 1–14. [17] 赵德博, 易伟建. 钢筋混凝土梁抗冲击性能和设计方法研究 [J]. 振动与冲击, 2015, 34(11): 139–145.ZHAO D B, YI W J. Anti-impact behavior and design method for RC beams [J]. Journal of Vibration and Shock, 2015, 34(11): 139–145.