氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究

马秋菊 邵俊程 王众山 刘家平

马秋菊, 邵俊程, 王众山, 刘家平. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究[J]. 高压物理学报, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
引用本文: 马秋菊, 邵俊程, 王众山, 刘家平. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究[J]. 高压物理学报, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
MA Qiuju, SHAO Juncheng, WANG Zhongshan, LIU Jiaping. Experimental Study of the Hydrogen Proportion and Ignition Energy Effects on the CH4-H2 Mixture Explosion Intensity[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
Citation: MA Qiuju, SHAO Juncheng, WANG Zhongshan, LIU Jiaping. Experimental Study of the Hydrogen Proportion and Ignition Energy Effects on the CH4-H2 Mixture Explosion Intensity[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803

氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究

doi: 10.11858/gywlxb.20190803
基金项目: 国家重点研发计划(2017YFC08003300);爆炸科学与技术国家重点实验室(北京理工大学)开放课题(KFJJ18-03M);“煤炭资源与安全开采”国家重点实验室开放基金(SKLCRSM19KFA11)
详细信息
    作者简介:

    马秋菊(1987-),女,博士,讲师,主要从事燃爆动力学研究. E-mail: ma200609@126.com

  • 中图分类号: O381; TD712.7

Experimental Study of the Hydrogen Proportion and Ignition Energy Effects on the CH4-H2 Mixture Explosion Intensity

  • 摘要: 在20 L标准球形爆炸罐内开展了当量比为1的甲烷-氢气-空气混合气体爆炸实验,通过改变点火能量和氢气体积分数,探讨点火能量和气体比例对其爆炸压力和爆炸强度的影响。研究发现:氢气比例越高,爆炸冲击波传播速度越快,点火能对冲击波传播速度的影响相对较小;点火能量的提高对峰值超压有增强作用,氢气比例低时,此增强作用较显著,氢气比例高时,此增强作用较弱;点火能量对爆炸强度指数KG的影响较小,而氢气比例对爆炸强度指数KG的影响十分明显,氢气比例低于50%时,氢气比例的增加对爆炸强度的增强作用较弱,氢气比例高于50%时,氢气的增加对爆炸强度的激励作用急剧增强。另外发现,相同当量比条件下,氢气的爆炸强度指数近似为甲烷爆炸强度指数的10倍。

     

  • 图  20 L球形爆炸罐及实验装置

    Figure  1.  20 L spherical explosion vessel and experimental devices

    图  爆炸超压-时间历程曲线

    Figure  2.  Overpressure-time curves for each case

    图  不同氢气体积分数时峰值超压随点火能量的变化

    Figure  3.  Peak overpressure varying with ignition energy under different volume fractions of hydrogen

    图  不同点火能量下峰值超压随氢气体积分数的变化

    Figure  4.  Peak overpressure varying with volume fraction of hydrogen under different ignition energies

    图  不同点火能时KG随氢气体积分数的变化

    Figure  5.  KG varying with the volume fraction of hydrogen under different ignition energies

    表  1  实验中CH4-H2-Air混合物的组分比例

    Table  1.   Mixture compositions in the explosion test

    X/%Equivalence ratio ψ = 1
    w(H2)/%w(CH4)/%w(Air)/%
    00 9.50 90.50
    0.3 3.588.3588.07
    0.5 7.197.1985.62
    0.712.675.4381.90
    1.029.580 70.42
    下载: 导出CSV
  • [1] SHRESTHA S O B, KARIM G A. Hydrogen as an additive to methane for spark ignition engine applications [J]. International Journal of Hydrogen Energy, 1999, 24(6): 577–586. doi: 10.1016/S0360-3199(98)00103-7
    [2] WIERZBA I, KILCHYK V. Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures [J]. International Journal of Hydrogen Energy, 2001, 26(6): 639–43. doi: 10.1016/S0360-3199(00)00114-2
    [3] TROINAI G. Effect of velocity inflow conditions on the stability of a CH4/air jet-flame [J]. Combustion and Flame, 2009, 156(2): 539–42. doi: 10.1016/j.combustflame.2008.11.020
    [4] YU G, LAW C K, WU C K. Laminar flame speeds of hydrocarbon air mixtures with hydrogen addition [J]. Combustion and Flame, 1986, 63(3): 339–47. doi: 10.1016/0010-2180(86)90003-9
    [5] MIDDHA P, ENGEL D, HANSEN O R. Can the addition of hydrogen to natural gas reduce the explosion risk? [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2628–2636. doi: 10.1016/j.ijhydene.2010.04.132
    [6] 仇锐来, 张延松, 张兰, 等. 点火能量对瓦斯爆炸传播压力的影响实验研究 [J]. 煤矿安全, 2011, 42(7): 8–11.

    QIU R L, ZHANG Y S, ZHANG L, et al. Experimental study on impact of ignition energy on gas explosion dissemination pressure [J]. Safety in Coal Mines, 2011, 42(7): 8–11.
    [7] 李润之, 司荣军. 点火能量对瓦斯爆炸压力影响的实验研究 [J]. 矿业安全与环保, 2010, 37(2): 14–16, 19. doi: 10.3969/j.issn.1008-4495.2010.02.005

    LI R Z, SI R J. Experiment study on the effects of ignition energy on the methane explosion overpressure [J]. Mining Safety and Environmental Protection, 2010, 37(2): 14–16, 19. doi: 10.3969/j.issn.1008-4495.2010.02.005
    [8] 康杨, 白桥栋, 翁春生. 不同点火因素对爆轰波传播影响的数值模拟 [J]. 南通大学学报(自然科学版), 2015, 14(1): 8–15. doi: 10.3969/j.issn.1673-2340.2015.01.002

    KANG Y, BAI Q D, WENG C S. Numerical simulation of the effect of different ignition factors on detonation wave propagation [J]. Journal of Nantong University (Natural Science Edition), 2015, 14(1): 8–15. doi: 10.3969/j.issn.1673-2340.2015.01.002
    [9] 仇锐来. 点火能量对瓦斯爆炸传播的数值模拟研究 [J]. 煤矿安全, 2011, 42(1): 5–8.

    QIU R L. Numerical simulation of the effect of ignition energy on the gas explosion propagation [J]. Safety in Coal Mines, 2011, 42(1): 5–8.
    [10] LAW C K. Combustion physics [M]. New York: Cambridge University Press, 2006: 95.
    [11] SHER E, REFAEL S. A simplified reaction scheme for the combustion of hydrogen enriched methane/air flame [J]. Combustion Science and Technology, 1988, 59(4): 371–389.
    [12] RAZUS D, MOVILEANUA C, OANCEA D. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures [J]. Journal of Hazardous Materials, 2007, 139(1): 1–8. doi: 10.1016/j.jhazmat.2006.05.103
    [13] National Fluid Power Association. Guide for venting of deflagrations: NFPA 68-1998 [S]. Quincy, MA: National Fire Protection Association, 1998: 92–95.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  10588
  • HTML全文浏览量:  3927
  • PDF下载量:  25
出版历程
  • 收稿日期:  2019-07-03
  • 修回日期:  2019-07-23

目录

    /

    返回文章
    返回