钙钛矿结构ZrBeO3稳定性的第一性原理研究

温新竹 彭玉颜 刘明真

温新竹, 彭玉颜, 刘明真. 钙钛矿结构ZrBeO3稳定性的第一性原理研究[J]. 高压物理学报, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802
引用本文: 温新竹, 彭玉颜, 刘明真. 钙钛矿结构ZrBeO3稳定性的第一性原理研究[J]. 高压物理学报, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802
WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802
Citation: WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802

钙钛矿结构ZrBeO3稳定性的第一性原理研究

doi: 10.11858/gywlxb.20190802
基金项目: 国家自然科学基金(11675001);福建省科技厅引导性项目(2018H0040);江门市基础与理论科学研究类科技计划项目(2019030101590008821)
详细信息
    作者简介:

    温新竹(1982-),男,副教授,主要从事材料学研究. E-mail: 64412900@qq.com

  • 中图分类号: O521.2; TM911.4

First-Principles Study on Structural Stability of Perovskite ZrBeO3

  • 摘要: 基于密度泛函理论构建了钙钛矿结构ZrBeO3晶体模型,计算了该晶体模型结合能,表明了该构型热力学稳定性;计算出该结构在不同压力下的弹性常数,并据此计算了ZrBeO3的体积模量、剪切模量、杨氏模量、泊松比、BH/GH(体模量/剪切模量)等参数,结果表明该材料具有机械稳定性,随着等静压力增加,材料由脆性向韧性转变;计算了零压下ZrBeO3的硬度,为34.5 GPa,表明该结构晶体应为超硬材料;计算了ZrBeO3的声子能谱,结果表明ZrBeO3在低温零压下热动力学不稳定,为此分析比较了不同压力下的声子能谱、不同原子轨道及化学键布居值,研究表明随着压力增加,Be原子sp杂化后形成的Be-O共价键成分增强、Zr-O键离子键成分增强,晶格动力学趋于稳定。

     

  • 图  ZrBeO3晶格常数a随总能E变化曲线

    Figure  1.  Lattice constants (a) vs. total energy (E) of ZrBeO3

    图  ZrBeO3晶体模型

    Figure  2.  ZrBeO3 crystal model

    图  零压下的ZrBeO3声子能谱

    Figure  3.  ZrBeO3 phonon spectra at zero pressure

    图  不同压力下的ZrBeO3声子能谱

    Figure  4.  Phonon spectra of ZrBeO3 at different pressures

    图  不同压力下ZrBeO3电子总态密度及各原子分波态密度图

    Figure  5.  Total density of state of ZrBeO3 electrons and partial density of states of each atom at different pressures

    A1  ZrBeO3的电子能带结构

    A1.  Electronic band structure of ZrBeO3

    A2  ZrBeO3的吸收谱

    A2.  Optical absorption spectrum of ZrBeO3

    A3  ZrBeO3的反射谱

    A3.  Optical reflectivity spectrum of ZrBeO3

    A4  ZrBeO3介电函数谱线

    A4.  Dielectric function spectrum of ZrBeO3

    表  1  ZrBeO3模型晶格参数

    Table  1.   Lattice parameters of ZrBeO3 model

    CompoundLattice/nmWykoff coordinatesVolume/(10–3 nm3)Bond Length/nmBond population
    ZrBeO3 cubic0.346 1Zr(0.00, 0.00, 0.00)a
    Be(0.50, 0.50, 0.50)a
    O(0.50, 0.50, 0.00)a
    41.447 3Be-O 0.173 0
    Zr-O 0.244 7
    Be-O (3) 0.66
    Zr-O (3) 0.61
    下载: 导出CSV

    表  2  不同压力下的弹性常数、体积模量、剪切模量、杨氏模量、泊松比、BH/GH

    Table  2.   Elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, BH/GH under different pressures

    p/GPaC11C12C44BHGHE$v$BH/GH
    0 422.45149.33171.48 240.37157.55 385.860.2321.53
    30 582.04212.84222.98 335.91206.74 514.650.2451.62
    50 775.37315.82306.78 469.01273.25 686.430.2561.72
    1001 021.29401.25353.07 607.94335.17 850.860.2671.81
    1501 281.55513.85432.03 769.75412.761 049.020.2731.86
    2001 515.13614.39500.17 914.63479.621 224.670.2771.91
    2501 778.26731.79580.321 080.61556.761 425.470.2801.94
    3002 256.08940.80723.011 379.23696.111 787.600.2841.98
    下载: 导出CSV

    表  3  不同压力下原子轨道和化学键的布居值分布

    Table  3.   Atomic orbital and chemical bond population distribution at different pressures

    p/
    GPa
    AtomicspdBond Be-OBond Zr-O
    PopulationBond length/nmPopulationBond length/nm
    0Be/Zr/O(3)2.34/2.26/1.821.11/6.31/4.890/1.84/00.630.173 00.620.244 7
    50Be/Zr/O(3)2.31/2.18/1.791.24/6.24/4.920/1.91/00.690.162 50.530.229 8
    100Be/Zr/O(3)2.29/2.12/1.771.31/6.21/4.930/1.97/00.720.157 70.470.223 0
    150Be/Zr/O(3)2.27/2.08/1.761.37/6.18/4.940/2.01/00.750.154 20.400.218 0
    200Be/Zr/O(3)2.26/2.04/1.751.42/6.16/4.940/2.05/00.770.151 30.330.214 0
    下载: 导出CSV
  • [1] IKEGAMI K, LU M, OHON R, et al. Nonlinear electrical properties of thin films of a light-emitting perovskite type oxide Pr0.002(Ca0.6Sr0.4)0.997TiO3 [J]. Procedia Engineering, 2012, 36: 388–395. doi: 10.1016/j.proeng.2012.03.057
    [2] TAKASHIMA H, SHIMADA K, MIURA N, et al. Low-driving-voltage electroluminescence in perovskite films [J]. Advanced Materials, 2009, 21(36): 3699–3702. doi: 10.1002/adma.200900524
    [3] SAHA S, SINHA T P, MOOKERJEE A. Electric structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 699–702.
    [4] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展 [J]. 物理学报, 2018, 67(15): 60–72.

    ZHAO G D, YANG Y L, REN W. Progress in unconventional ferroelectricity of perovskite-type oxides [J]. Acta Physica Sinica, 2018, 67(15): 60–72.
    [5] PARK S Y, KUMAR A, RABE K. Carbon fibers from polyacrylonitrile/cellulose [J]. 2016 APS Meeting, 2016, 6(17): 160–172.
    [6] FENNIE C J. Ferroelectrically induced weak ferromagnetism by design [J]. Physical Review Letters, 2008, 100(16): 167203. doi: 10.1103/PhysRevLett.100.167203
    [7] DOLAN D H, AO T. Cubic zirconia as a dynamic compression window [J]. Applied Physics Letters, 2008, 93(2): 021908. doi: 10.1063/1.2957996
    [8] RESTANI R, MARTIN M, KIVEL N, et al. Analytical investigations of irradiated inert matrix fuel [J]. Journal of Nuclear Materials, 2009, 385(2): 435–442. doi: 10.1016/j.jnucmat.2008.12.030
    [9] CONRADSON S D, DEGUELDRE C A, ESPINOSA-FALLER F J, et al. Complex behavior in quaternary zirconias for inert matrix fuel: what do these materials look like at the nanometer scale? [J]. Progress in Nuclear Energy, 2001, 38(3/4): 221–230.
    [10] WANG S J, ONG C K, XU S Y, et al. Crystalline zirconia oxide on silicon as alternative gate dielectrics [J]. Applied Physics Letters, 2001, 78(11): 1604–1606. doi: 10.1063/1.1354161
    [11] LIN Y S, PUTHENKOVILAKAM R, CHANG J P, et al. Interfacial properties of ZrO2 on silicon [J]. Journal of Applied Physics, 2003, 93(10): 5945–5952. doi: 10.1063/1.1563844
    [12] WILK G D, WALLACE R M, ANTHONY J M. High-κ gate dielectrics: current status and materials properties considerations [J]. Journal of Applied Physics, 2001, 89(10): 5243–5275. doi: 10.1063/1.1361065
    [13] MCEVOY A. Thin SOFC electrolytes and their interfacesâ: a near-term research strategy [J]. Solid State Ionics, 2000, 132(3/4): 159–165.
    [14] BILIĆ A T, GALE J D. Ground state structure of BaZrO3: a comparative first-principles study [J]. Physical Review B, 2009, 79(17): 174107. doi: 10.1103/PhysRevB.79.174107
    [15] ZHANG H W, FU X Y, NIU S Y, et al. Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A = Ca, Sr, Ba) perovskite [J]. Journal of Alloys and Compounds, 2008, 459(1/2): 103–106.
    [16] DUBEY V, TIWARI N. Structural and optical analysis on europium doped AZrO3 (A = Ba, Ca, Sr) phosphor for display devices application [C]//Bikaner, India. Author(s), 2016, 1728(1): 15-32.
    [17] RANDALL C A, BHALLA A S, SHROUT T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order [J]. Journal of Materials Research, 1990, 5(4): 829–834. doi: 10.1557/JMR.1990.0829
    [18] BRADHA M, HUSSAIN S, CHAKRAVARTY S, et al. Total conductivity in Sc-doped LaTiO3+δ perovskites [J]. Ionics, 2014, 20(9): 1343–1350. doi: 10.1007/s11581-014-1216-y
    [19] GEPPERT B, GROENEVELD D, LOBODA V, et al. Finite-element simulations of a thermoelectric generator and their experimental validation [J]. Energy Harvesting and Systems, 2015, 2(1/2): 97–103.
    [20] MUHAMMAD I D, AWANG M, MAMAT O, et al. First-principles calculations of the structural, mechanical and thermodynamics properties of cubic zirconia [J]. World Journal of Nano Science and Engineering, 2014, 4(2): 97–103. doi: 10.4236/wjnse.2014.42013
    [21] BAERENDS E J. Perspective on “Self-consistent equations including exchange and correlation effects” [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2000, 103(3/4): 265–269.
    [22] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
    [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [24] JIA X F, HOU Q Y, XU Z C, et al. Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle [J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 128–135. doi: 10.1016/j.jmmm.2018.05.037
    [25] FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization [J]. The Journal of Physical Chemistry, 1992, 96(24): 9768–9774. doi: 10.1021/j100203a036
    [26] DING Y C, CHEN M, WU W J. Phase stability, elasticity, hardness and the minimum thermal conductivity of Si2N2O polymorphs from first principles calculations [J]. Physica B: Condensed Matter, 2014, 449: 236–245. doi: 10.1016/j.physb.2014.05.042
    [27] GONZE X, BEUKEN J M, CARACAS R, et al. First-principles computation of material properties: the ABINIT software project [J]. Computational Materials Science, 2002, 25(3): 478–492. doi: 10.1016/S0927-0256(02)00325-7
    [28] DING J F, LI X M, CUI L L, et al. Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations [J]. Journal of Central South University, 2014, 21(7): 2584–2589. doi: 10.1007/s11771-014-2216-9
    [29] BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1955, 23(7): 474.
    [30] WU Z J, HAO X F, LIU X J, et al. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations [J]. Physical Review B, 2007, 75(5): 054115. doi: 10.1103/PhysRevB.75.054115
    [31] ZHAO J J, WINEY J M, GUPTA Y M. First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry [J]. Physical Review B, 2007, 75(9): 094105. doi: 10.1103/PhysRevB.75.094105
    [32] GAO F M. Theoretical model of intrinsic hardness [J]. Physical Review B, 2006, 73(13): 132104. doi: 10.1103/PhysRevB.73.132104
    [33] FAN C Z, ZENG S Y, LI L X, et al. Potential superhard osmium dinitride with fluorite and pyrite structure: first-principles calculations [J]. Physical Review B, 2006, 74(12): 125118. doi: 10.1103/PhysRevB.74.125118
    [34] 丁迎春, 肖冰. 一种超硬新材料BeP2N4的电子结构和力学性质及本征硬度 [J]. 物理化学学报, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730

    DING Y C, XIAO B. Electronic structure, mechanical properties and intrinsic hardness of a new superhard material BeP2N4 [J]. Acta Physico-Chimica Sinica, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730
    [35] SHARMA A D, SINHA M M. Lattice dynamics of protonic conductors AZrO3 (A = Ba, Sr & Pb): a comparative study [J]. Advanced Materials Research, 2013, 685: 191–194. doi: 10.4028/www.scientific.net/AMR.685.191
    [36] 刘哲, 李辉, 赵鹏. Ti5Al2C3与Ti2AlC、Ti3AlC2结构、弹性和电子性质的第一性原理对比研究 [J]. 人工晶体学报, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011

    LIU Z, LI H, ZHAO P. A first-principles comparative study of the structure, elasticity and electronic properties of Ti5Al2C3, Ti2AlC and Ti3AlC2 [J]. Journal of Artificial Lenses, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011
    [37] LAI J, JIA X, WANG D. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers [J]. Nature Communications, 2019, 10(1): 155–167. doi: 10.1038/s41467-018-07819-1
    [38] GULL E, PARCOLLET O, MILLIS A J. Superconductivity and the pseudogap in the two-dimensional Hubbard model [J]. Physical Review Letters, 2013, 110(21): 256–298.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  10393
  • HTML全文浏览量:  3907
  • PDF下载量:  42
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2019-07-25

目录

    /

    返回文章
    返回