First-Principles Study on Structural Stability of Perovskite ZrBeO3
-
摘要: 基于密度泛函理论构建了钙钛矿结构ZrBeO3晶体模型,计算了该晶体模型结合能,表明了该构型热力学稳定性;计算出该结构在不同压力下的弹性常数,并据此计算了ZrBeO3的体积模量、剪切模量、杨氏模量、泊松比、BH/GH(体模量/剪切模量)等参数,结果表明该材料具有机械稳定性,随着等静压力增加,材料由脆性向韧性转变;计算了零压下ZrBeO3的硬度,为34.5 GPa,表明该结构晶体应为超硬材料;计算了ZrBeO3的声子能谱,结果表明ZrBeO3在低温零压下热动力学不稳定,为此分析比较了不同压力下的声子能谱、不同原子轨道及化学键布居值,研究表明随着压力增加,Be原子sp杂化后形成的Be-O共价键成分增强、Zr-O键离子键成分增强,晶格动力学趋于稳定。Abstract: Based on density functional theory, a ZrBeO3 crystal model of perovskite structure was constructed. The binding energy of the crystal model was calculated, and the thermodynamic stability of the structure was calculated. The elastic constant of the structure under different pressures was calculated, and ZrBeO3 was calculated according to it. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, BH/GH and other parameters, the calculation results show that the material has mechanical stability, and the material changes from brittle to ductile with increasing isostatic pressure; the hardness of ZrBeO3 under zero pressure is 34.5 GPa, which indicates that the crystal should be superhard material. The calculated phonon energy spectrum show that ZrBeO3 is thermodynamically unstable under low temperature and zero pressure. The phonon spectrum, different atomic orbitals and chemical bond values at different pressures show that the Be-O covalent bond formed by the impurity of Be atom is enhanced and the Zr-O bond ion bond component is enhanced with the increase of pressure. The lattice dynamics tend to be stable.
-
Key words:
- ZrBeO3 /
- stability /
- first principles /
- crystal structure
-
表 1 ZrBeO3模型晶格参数
Table 1. Lattice parameters of ZrBeO3 model
Compound Lattice/nm Wykoff coordinates Volume/(10–3 nm3) Bond Length/nm Bond population ZrBeO3 cubic 0.346 1 Zr(0.00, 0.00, 0.00)a
Be(0.50, 0.50, 0.50)a
O(0.50, 0.50, 0.00)a41.447 3 Be-O 0.173 0
Zr-O 0.244 7Be-O (3) 0.66
Zr-O (3) 0.61表 2 不同压力下的弹性常数、体积模量、剪切模量、杨氏模量、泊松比、BH/GH
Table 2. Elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, BH/GH under different pressures
p/GPa C11 C12 C44 BH GH E $v$ BH/GH 0 422.45 149.33 171.48 240.37 157.55 385.86 0.232 1.53 30 582.04 212.84 222.98 335.91 206.74 514.65 0.245 1.62 50 775.37 315.82 306.78 469.01 273.25 686.43 0.256 1.72 100 1 021.29 401.25 353.07 607.94 335.17 850.86 0.267 1.81 150 1 281.55 513.85 432.03 769.75 412.76 1 049.02 0.273 1.86 200 1 515.13 614.39 500.17 914.63 479.62 1 224.67 0.277 1.91 250 1 778.26 731.79 580.32 1 080.61 556.76 1 425.47 0.280 1.94 300 2 256.08 940.80 723.01 1 379.23 696.11 1 787.60 0.284 1.98 表 3 不同压力下原子轨道和化学键的布居值分布
Table 3. Atomic orbital and chemical bond population distribution at different pressures
p/
GPaAtomic s p d Bond Be-O Bond Zr-O Population Bond length/nm Population Bond length/nm 0 Be/Zr/O(3) 2.34/2.26/1.82 1.11/6.31/4.89 0/1.84/0 0.63 0.173 0 0.62 0.244 7 50 Be/Zr/O(3) 2.31/2.18/1.79 1.24/6.24/4.92 0/1.91/0 0.69 0.162 5 0.53 0.229 8 100 Be/Zr/O(3) 2.29/2.12/1.77 1.31/6.21/4.93 0/1.97/0 0.72 0.157 7 0.47 0.223 0 150 Be/Zr/O(3) 2.27/2.08/1.76 1.37/6.18/4.94 0/2.01/0 0.75 0.154 2 0.40 0.218 0 200 Be/Zr/O(3) 2.26/2.04/1.75 1.42/6.16/4.94 0/2.05/0 0.77 0.151 3 0.33 0.214 0 -
[1] IKEGAMI K, LU M, OHON R, et al. Nonlinear electrical properties of thin films of a light-emitting perovskite type oxide Pr0.002(Ca0.6Sr0.4)0.997TiO3 [J]. Procedia Engineering, 2012, 36: 388–395. doi: 10.1016/j.proeng.2012.03.057 [2] TAKASHIMA H, SHIMADA K, MIURA N, et al. Low-driving-voltage electroluminescence in perovskite films [J]. Advanced Materials, 2009, 21(36): 3699–3702. doi: 10.1002/adma.200900524 [3] SAHA S, SINHA T P, MOOKERJEE A. Electric structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 699–702. [4] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展 [J]. 物理学报, 2018, 67(15): 60–72.ZHAO G D, YANG Y L, REN W. Progress in unconventional ferroelectricity of perovskite-type oxides [J]. Acta Physica Sinica, 2018, 67(15): 60–72. [5] PARK S Y, KUMAR A, RABE K. Carbon fibers from polyacrylonitrile/cellulose [J]. 2016 APS Meeting, 2016, 6(17): 160–172. [6] FENNIE C J. Ferroelectrically induced weak ferromagnetism by design [J]. Physical Review Letters, 2008, 100(16): 167203. doi: 10.1103/PhysRevLett.100.167203 [7] DOLAN D H, AO T. Cubic zirconia as a dynamic compression window [J]. Applied Physics Letters, 2008, 93(2): 021908. doi: 10.1063/1.2957996 [8] RESTANI R, MARTIN M, KIVEL N, et al. Analytical investigations of irradiated inert matrix fuel [J]. Journal of Nuclear Materials, 2009, 385(2): 435–442. doi: 10.1016/j.jnucmat.2008.12.030 [9] CONRADSON S D, DEGUELDRE C A, ESPINOSA-FALLER F J, et al. Complex behavior in quaternary zirconias for inert matrix fuel: what do these materials look like at the nanometer scale? [J]. Progress in Nuclear Energy, 2001, 38(3/4): 221–230. [10] WANG S J, ONG C K, XU S Y, et al. Crystalline zirconia oxide on silicon as alternative gate dielectrics [J]. Applied Physics Letters, 2001, 78(11): 1604–1606. doi: 10.1063/1.1354161 [11] LIN Y S, PUTHENKOVILAKAM R, CHANG J P, et al. Interfacial properties of ZrO2 on silicon [J]. Journal of Applied Physics, 2003, 93(10): 5945–5952. doi: 10.1063/1.1563844 [12] WILK G D, WALLACE R M, ANTHONY J M. High-κ gate dielectrics: current status and materials properties considerations [J]. Journal of Applied Physics, 2001, 89(10): 5243–5275. doi: 10.1063/1.1361065 [13] MCEVOY A. Thin SOFC electrolytes and their interfacesâ: a near-term research strategy [J]. Solid State Ionics, 2000, 132(3/4): 159–165. [14] BILIĆ A T, GALE J D. Ground state structure of BaZrO3: a comparative first-principles study [J]. Physical Review B, 2009, 79(17): 174107. doi: 10.1103/PhysRevB.79.174107 [15] ZHANG H W, FU X Y, NIU S Y, et al. Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A = Ca, Sr, Ba) perovskite [J]. Journal of Alloys and Compounds, 2008, 459(1/2): 103–106. [16] DUBEY V, TIWARI N. Structural and optical analysis on europium doped AZrO3 (A = Ba, Ca, Sr) phosphor for display devices application [C]//Bikaner, India. Author(s), 2016, 1728(1): 15-32. [17] RANDALL C A, BHALLA A S, SHROUT T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order [J]. Journal of Materials Research, 1990, 5(4): 829–834. doi: 10.1557/JMR.1990.0829 [18] BRADHA M, HUSSAIN S, CHAKRAVARTY S, et al. Total conductivity in Sc-doped LaTiO3+δ perovskites [J]. Ionics, 2014, 20(9): 1343–1350. doi: 10.1007/s11581-014-1216-y [19] GEPPERT B, GROENEVELD D, LOBODA V, et al. Finite-element simulations of a thermoelectric generator and their experimental validation [J]. Energy Harvesting and Systems, 2015, 2(1/2): 97–103. [20] MUHAMMAD I D, AWANG M, MAMAT O, et al. First-principles calculations of the structural, mechanical and thermodynamics properties of cubic zirconia [J]. World Journal of Nano Science and Engineering, 2014, 4(2): 97–103. doi: 10.4236/wjnse.2014.42013 [21] BAERENDS E J. Perspective on “Self-consistent equations including exchange and correlation effects” [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2000, 103(3/4): 265–269. [22] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301 [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865 [24] JIA X F, HOU Q Y, XU Z C, et al. Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle [J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 128–135. doi: 10.1016/j.jmmm.2018.05.037 [25] FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization [J]. The Journal of Physical Chemistry, 1992, 96(24): 9768–9774. doi: 10.1021/j100203a036 [26] DING Y C, CHEN M, WU W J. Phase stability, elasticity, hardness and the minimum thermal conductivity of Si2N2O polymorphs from first principles calculations [J]. Physica B: Condensed Matter, 2014, 449: 236–245. doi: 10.1016/j.physb.2014.05.042 [27] GONZE X, BEUKEN J M, CARACAS R, et al. First-principles computation of material properties: the ABINIT software project [J]. Computational Materials Science, 2002, 25(3): 478–492. doi: 10.1016/S0927-0256(02)00325-7 [28] DING J F, LI X M, CUI L L, et al. Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations [J]. Journal of Central South University, 2014, 21(7): 2584–2589. doi: 10.1007/s11771-014-2216-9 [29] BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1955, 23(7): 474. [30] WU Z J, HAO X F, LIU X J, et al. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations [J]. Physical Review B, 2007, 75(5): 054115. doi: 10.1103/PhysRevB.75.054115 [31] ZHAO J J, WINEY J M, GUPTA Y M. First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry [J]. Physical Review B, 2007, 75(9): 094105. doi: 10.1103/PhysRevB.75.094105 [32] GAO F M. Theoretical model of intrinsic hardness [J]. Physical Review B, 2006, 73(13): 132104. doi: 10.1103/PhysRevB.73.132104 [33] FAN C Z, ZENG S Y, LI L X, et al. Potential superhard osmium dinitride with fluorite and pyrite structure: first-principles calculations [J]. Physical Review B, 2006, 74(12): 125118. doi: 10.1103/PhysRevB.74.125118 [34] 丁迎春, 肖冰. 一种超硬新材料BeP2N4的电子结构和力学性质及本征硬度 [J]. 物理化学学报, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730DING Y C, XIAO B. Electronic structure, mechanical properties and intrinsic hardness of a new superhard material BeP2N4 [J]. Acta Physico-Chimica Sinica, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730 [35] SHARMA A D, SINHA M M. Lattice dynamics of protonic conductors AZrO3 (A = Ba, Sr & Pb): a comparative study [J]. Advanced Materials Research, 2013, 685: 191–194. doi: 10.4028/www.scientific.net/AMR.685.191 [36] 刘哲, 李辉, 赵鹏. Ti5Al2C3与Ti2AlC、Ti3AlC2结构、弹性和电子性质的第一性原理对比研究 [J]. 人工晶体学报, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011LIU Z, LI H, ZHAO P. A first-principles comparative study of the structure, elasticity and electronic properties of Ti5Al2C3, Ti2AlC and Ti3AlC2 [J]. Journal of Artificial Lenses, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011 [37] LAI J, JIA X, WANG D. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers [J]. Nature Communications, 2019, 10(1): 155–167. doi: 10.1038/s41467-018-07819-1 [38] GULL E, PARCOLLET O, MILLIS A J. Superconductivity and the pseudogap in the two-dimensional Hubbard model [J]. Physical Review Letters, 2013, 110(21): 256–298. -