超空泡射弹水下侵彻靶板三相耦合数值模拟

李昕 严平 谭波 秦一平

李昕, 严平, 谭波, 秦一平. 超空泡射弹水下侵彻靶板三相耦合数值模拟[J]. 高压物理学报, 2020, 34(1): 015103. doi: 10.11858/gywlxb.20190798
引用本文: 李昕, 严平, 谭波, 秦一平. 超空泡射弹水下侵彻靶板三相耦合数值模拟[J]. 高压物理学报, 2020, 34(1): 015103. doi: 10.11858/gywlxb.20190798
LI Xin, YAN Ping, TAN Bo, QIN Yiping. Three-Phase Coupling Numerical Simulation of Underwater Penetration of Supercavitating Projectile into Target Plate[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015103. doi: 10.11858/gywlxb.20190798
Citation: LI Xin, YAN Ping, TAN Bo, QIN Yiping. Three-Phase Coupling Numerical Simulation of Underwater Penetration of Supercavitating Projectile into Target Plate[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015103. doi: 10.11858/gywlxb.20190798

超空泡射弹水下侵彻靶板三相耦合数值模拟

doi: 10.11858/gywlxb.20190798
详细信息
    作者简介:

    李 昕(1995-),男,硕士研究生,主要从事武器系统运用与保障研究.E-mail: 276377954@qq.com

    通讯作者:

    严 平(1972-),男,博士,副教授,主要从事弹药毁伤与安全研究.E-mail: daer2004@sina.com

  • 中图分类号: O385;TJ411

Three-Phase Coupling Numerical Simulation of Underwater Penetration of Supercavitating Projectile into Target Plate

  • 摘要: 超空泡射弹侵彻问题的实质是特殊水下结构受到高速冲击载荷作用下的动态响应。对12.7 mm口径超空泡射弹侵彻典型水下目标壳体的毁伤效果开展研究,基于LS-DYNA有限元分析软件建立水环境中超空泡射弹垂直侵彻曲面靶板的等效模型,探讨射弹侵彻过程中动能侵彻和气泡溃灭对靶板联合毁伤效果,获得了靶板在各阶段的应力变化和结构变形规律。结果表明:侵彻靶板前,射弹着靶速度为200 m/s时的头部表面水介质压力峰值达768 N,靶板表面有明显下凹变形;侵彻靶板时,伴随着射弹动能侵彻和气泡溃灭冲击,水介质造成的影响不足动能侵彻的2%;侵彻靶板后,在靶板正面形成峰值速度为42 m/s的水射流进一步作用于破口;靶板整体弯曲变形,在200~300 m/s范围内,随着射弹着靶速度的增加,靶板弯曲形变量减小;靶板局部发生延性穿孔,射弹在水环境中具有更好的破口效果,射弹速度变化对破口尺寸影响不大。

     

  • 图  超空泡射弹水下侵彻靶板几何模型

    Figure  1.  Geometric model of underwater penetration of supercavitating projectile into target plate

    图  纺锤形空腔及水环境压力等值面

    Figure  2.  Fusiform cavity and the iso-surface of water environment pressure

    图  Element 1~Element 5五个测试单元

    Figure  3.  Five test units of Element 1 – Element 5

    图  5个测试单元的范式应力时程曲线

    Figure  4.  von Mises stress time-history curves of five test units

    图  侵彻前靶板的应力

    Figure  5.  Stress of the target plate before penetration

    图  超空泡射弹侵彻靶板

    Figure  6.  Supercavitating projectile penetrating target plate

    图  空气和水环境中侵彻部位应力时程曲线

    Figure  7.  Stress time-history curves of penetrating site in air and water environments

    图  超空泡射弹侵彻靶板后效水射流横截面

    Figure  8.  Cross section of after effect water jet of supercavitating projectile penetrating target plate

    图  Element 6~Element 8三个测试单元位置

    Figure  9.  Locations of three test units of Element 6 – Element 8

    图  10  空气和水环境中靶板内壁应力时程曲线

    Figure  10.  Stress time-history curves of target inwall in air and water environments

    图  11  Element 9、Element 10两个测试单元

    Figure  11.  Two test units of Element 9 and Element 10

    图  12  空气和水环境中靶板破口中面挠度变化曲线

    Figure  12.  Variations of mid-plane deflection of target plate in air and water environments

    图  13  两种介质下靶板破口正背面形状

    Figure  13.  Front and back shapes of target breaks in two media

    图  14  靶板破口尺寸测量方法

    Figure  14.  Measuring method of the target break size

    图  15  不同射弹着靶速度下靶板破口尺寸变化曲线

    Figure  15.  Variations of target break size at different target velocities

    表  1  材料参数

    Table  1.   Material parameters

    Partρ/(g.cm–3)G/GPaE/GPaνD
    Water1.02
    Air0.001 25
    Projectile head17.601363500.281.5
    Projectile body2.7726690.331.0
    Target2.8521710.690.8
    下载: 导出CSV
  • [1] 张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学 [M]. 北京: 国防工业出版社, 2014: 17–32.

    ZHANG Y W, YUAN X L, DENG F. Hydrodynamics of supercavitating vehicle [M]. Beijing: National Defense Industry Press, 2014: 17–32.
    [2] 姚忠, 王瑞, 徐保成. 超空泡射弹火炮武器应用现状研究 [J]. 火炮发射与控制学报, 2017, 38(3): 92–96.

    YAO Z, WANG R, XU B C. Research on application status of supercavitating projectile gun weapon [J]. Journal of Artillery Launch and Control, 2017, 38(3): 92–96.
    [3] 施红辉, 周东辉, 孙亚亚, 等. 水下连发射弹的超空泡流动特性研究 [J]. 兵工学报, 2018, 39(11): 2228–2234. doi: 10.3969/j.issn.1000-1093.2018.11.017

    SHI H H, ZHOU D H, SUN Y Y, et al. Study on supercavity flow characteristics of underwater continuous launch projectile [J]. Journal of China Ordnance, 2018, 39(11): 2228–2234. doi: 10.3969/j.issn.1000-1093.2018.11.017
    [4] YAN P, LI X. Numerical simulation of underwater supercavitating projectile penetrating structure equivalent of torpedo [C]//CHANG G F, CLIVE W, BAO M L. 2018 International Conference on Defence Technology Proceedings. Beijing: The Publishing House of Ordnance Industry, 2018: 629–633.
    [5] 邓环宇. 高速射弹侵彻行为及跳弹机理数值计算 [D]. 哈尔滨: 哈尔滨工业大学, 2016: 23–35.

    DENG H Y. Numerical calculation of penetration behavior and jump mechanism of high speed projectiles [D]. Harbin: Harbin Industrial University, 2016: 23–35.
    [6] 章启成. 水下高速运动体运动特性分析与试验研究 [D]. 南京: 南京理工大学, 2011: 31–40.

    ZHANG Q C. Analysis and experimental study on motion characteristics of underwater high-speed moving body [D]. Nanjing: Nanjing University of Science and Technology, 2011: 31–40.
    [7] 熊天红. 水下高速射弹超空泡减阻技术研究 [D]. 南京: 南京理工大学, 2005: 95–108.

    XIONG T H. Research on super-cavitation drag reduction technology of underwater high speed projectile [D]. Nanjing: Nanjing University of Science and Technology, 2005: 95–108.
    [8] 潘森森, 彭晓星. 空化机理 [M]. 北京: 国防工业出版社, 2013: 122–124.

    PAN S S, PENG X X. Physical mechanism of cavitation [M]. Beijing: National Defense Industry Press, 2013: 122–124.
    [9] 康德, 严平. 基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟 [J]. 爆炸与冲击, 2014, 34(5): 534–538. doi: 10.11883/1001-1455(2014)05-0534-05

    KANG D, YAN P. Fluid-solid coupling numerical simulation of motion characteristics of high-speed fragments in water based on LS-DYNA [J]. Explosion and Shock Waves, 2014, 34(5): 534–538. doi: 10.11883/1001-1455(2014)05-0534-05
    [10] 钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984: 289–290.

    QIAN W C. Armor piercing mechanics [M]. Beijing: National Defense Industry Press, 1984: 289–290.
    [11] CHEN X W, LI Q M. Perforation of a thick plate by rigid projectiles [J]. International Journal of Impact Engineering, 2003, 28(7): 743–759. doi: 10.1016/S0734-743X(02)00152-5
    [12] 黄超, 汪斌, 张远平, 等. 柱形装药自由场水中爆炸气泡的射流特性 [J]. 爆炸与冲击, 2011, 31(3): 263–267. doi: 10.11883/1001-1455(2011)03-0263-05

    HUANG C, WANG B, ZHANG Y P, et al. Jet characteristics of explosive bubbles in free field of cylindrical charge [J]. Explosion and Shock Waves, 2011, 31(3): 263–267. doi: 10.11883/1001-1455(2011)03-0263-05
    [13] 唐一华, 权晓波, 谷立祥, 等. 水下垂直发射航行体空泡流 [M]. 北京: 中国宇航出版社, 2017: 76–111.

    TANG Y H, QUAN X B, GU L X, et al. Cavity flow of vertical underwater launched vehicle [M]. Beijing: China Aerospace Publishing House, 2017: 76–111.
    [14] 王元博. 纤维增强层合材料的抗弹性能和破坏机理研究 [D]. 合肥: 中国科学技术大学, 2006: 47–51.

    WANG Y B. Study on bubble dynamic characteristics and jet impact damage of cylindrical charge [D]. Hefei: China University of Science and Technology, 2006: 47–51.
    [15] FORRESTAL M J, LUK V K. Perforation of aluminum armor plates with conical-nose projectiles [J]. Mechanics of Materials, 1990, 10(1): 97–105.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  7798
  • HTML全文浏览量:  3551
  • PDF下载量:  37
出版历程
  • 收稿日期:  2019-06-27
  • 修回日期:  2019-07-11
  • 刊出日期:  2020-01-25

目录

    /

    返回文章
    返回