Key Design Techniques for PVDF Sensitive Element Used in Dynamic Compression Experiments
-
摘要: 研究了聚偏二氟乙烯(PVDF)柔性压电传感器敏感单元设计关键技术和工艺。通过传感器敏感单元设计、电极制作、极化和封装研究实现功能,结合动态冲击压缩实验,对自主研制的PVDF传感器在不同压力段进行标定和A类不确定度评价,实验数据的A类不确定度优于10%,说明所研制的PVDF压电传感器精度高、重复性好,能够满足0.3~10.0 GPa动态冲击压力测量应用需求。目前产品设计水平已达到6级,后续将进一步开展更高压段有效性的应用设计、温度补偿效应研究和工程化产品设计。Abstract: This paper introduces key design techniques for PVDF sensitive element used in dynamic compression experiments. Based on the sensitive element design, electrode design, sensitive element polarization and sealing, PVDF dynamic pressure sensors are well design and produced. We also made dynamic experiments in order to calibrate the PVDF sensor. The results show that A-type uncertainty is less than 10%, which can be used in the dynamic pressure range of 0.3–10.0 GPa. We will extend the application to higher pressure range and consider the temperature effects.
-
表 1 Al和45钢的Hugoniot参数
Table 1. Hugoniot parameters of Al and 45 steel
Material ${{\;\rho _0}}$/(g·cm–3) c0/(km·s–1) λ Al 2.785 5.328 1.338 45 steel 7.850 4.483 1.332 表 2 电荷法实验结果
Table 2. Experimental results by charge method
Exp.No. Material of flyer u0/(m·s−1) p/GPa Umax/V (Q/A)max/($ {\text{μ}}$C·cm−2) d33/(pC·N−1) Pr/($ {\text{μ}}$C·cm−2) 0830-1 LY12 Al 48.434 0.361 2 0.598 67 0.665 2 12.0 8.279 7 0830-2 45 steel 83.384 1.473 0 1.097 90 1.219 9 10.8 7.528 9 0830-3 45 steel 109.557 1.942 8 1.367 27 1.519 2 10.5 7.878 1 0830-4 45 steel 129.536 2.303 8 1.433 01 1.592 2 15.5 7.987 1 0831-1 LY12 Al 126.221 0.950 6 0.813 58 0.904 0 15.2 10.301 7 1128-1 LY12 Al 47.137 0.351 5 0.459 01 0.510 0 15.1 7.806 1 1030 LY12 Al 628.531 5.395 0 1.636 01 1.817 8 15.6 6.934 0 1026 PMMA 1 004.704 2.426 1 1.120 07 1.244 5 15.3 7.832 2 1107 LY12 Al 970.275 8.069 3 1.883 43 2.092 7 11.4 7.216 3 1108 LY12 Al 1 250.441 10.725 5 2.357 62 2.619 6 12.8 8.287 2 -
[1] KAWAI H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7): 975–976. doi: 10.1143/JJAP.8.975 [2] BAUER F. Method and device for polarizing ferroelectric materials: 4611260 [P]. 1986–09–09. [3] BAUER F, LICHTENBERGER A. Use of PVF2 shock gauges for stress measurements in Hopkinson bar [C]// SCHMIDT S C, HOLMES N C. Shock Waves in Condensed Matter. California, 1987: 751–755. [4] OBARA T, BOURNE N K, MEBAR Y. The construction and calibration of an inexpensive PVDF stress gauge for fast pressure measurements [J]. Measurement Science and Technology, 1995, 6(4): 345. doi: 10.1088/0957-0233/6/4/001 [5] SALISBURY D A, WINTER R E, TAYLOR P, et al. The response of foams to shock compression [J]. AIP Conference Proceedings, 2000, 505(1): 197–200. [6] FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. doi: 10.1016/j.ijimpeng.2004.03.005 [7] GAMA B A, LOPATNIKOV S L, GILLESPIE Jr J W. Hopkinson bar experimental technique: a critical review [J]. Applied Mechanics Reviews, 2004, 57(4): 223–250. doi: 10.1115/1.1704626 [8] YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens [J]. International Journal of Impact Engineering, 2005, 31(2): 129–150. doi: 10.1016/j.ijimpeng.2003.09.002 [9] 席道瑛, 郑永来. PVDF压电计在动态应力测量中的应用 [J]. 爆炸与冲击, 1995, 15(2): 174–179.XI D Y, ZHENG Y L. Application of PVDF gauges to dynamical stress measurements [J]. Explosion and Shock Waves, 1995, 15(2): 174–179.