Determination of the Mechanical Properties of Metals at Very High Strain Rates
-
摘要: 金属材料广泛应用于国防工业和民用工程中,了解金属材料在强动载荷作用下的力学性能对武器和防护结构的设计和评估具有重要意义。通过在二级轻气炮上进行平板撞击实验,测定了93钨合金和921A钢在极高应变率下的动态屈服强度,详细介绍了实验的设计原理和实验数据的分析方法,并利用公式对93钨合金和921A钢的动态屈服强度进行分析。实验结果表明:93钨合金在应变率(冲击压力)分别为1.7 × 105 s−1(49.5 GPa)和3.1 × 105 s−1(84.1 GPa)下的屈服强度分别为2.10 GPa和2.78 GPa;921A钢在应变率(冲击压力)为3.6 × 105 s−1(38.1 GPa)、4.7 × 105 s−1(62.4 GPa)和6.2 × 105 s−1(90.1 GPa)下的屈服强度分别为2.08 、2.67 和3.15 GPa;在极高应变率下93钨合金和921A钢的动态增强因子为2~3。Abstract: Metals are widely used in the defense industry and civil engineering and an understanding of the mechanical properties of metals under intense dynamic loadings is of great significance for the design and assessment of weapons and protective structures. In this paper, the dynamic yield strengths (HELs) of 93 tungsten alloy and 921A steel at very high strain rates are determined by plate impact tests using a two-stage light gas gun system. The paper consists of three parts: firstly, the basic principle of the plate impact experiment is briefly introduced; secondly, the experimental data is analyzed in some details; finally, the dynamic yield strengths of 93 tungsten alloy and 921A steel at very high strain rates are determined. The experimental results show that the dynamic yield strengths of 93 tungsten alloy at strain rates of 1.7 × 105 s−1 and 3.1 × 105 s−1 are 2.10 GPa and 2.78 GPa respectively and the dynamic yield strengths of 921A steel at strain rates of 3.6 × 105 s−1, 4.7 × 105 s−1 and 6.2 × 105 s−1 are 2.08 GPa, 2.67 GPa and 3.15 GPa, respectively. The experimental results also show that the dynamic increase factors for 93 tungsten alloy and 921A steel at very high strain rates are between 2 and 3.
-
Key words:
- plate impact /
- 93 tungsten alloy /
- 921A steel /
- strain rate /
- dynamic yield strength
-
表 1 93钨合金和921A钢的实验结果
Table 1. Test results for 93 tungsten alloy and 921A steel
No. hs/mm vi/(km·s−1) pH/GPa G/GPa Strain Strain rates/106 s−1 (τc + τ0)/GPa YH/GPa σd/GPa 93W-1 3.218 2.82 49.5 196 0.11 0.17 1.05 2.10 1.28 93W-2 2.892 4.23 84.1 254 0.17 0.31 2.26 2.78 1.54 921A-1 2.808 2.88 38.1 110 0.21 0.36 1.07 2.08 1.19 921A-2 2.823 4.02 62.4 141 0.22 0.47 2.62 2.67 1.44 921A-3 2.818 5.20 90.1 166 0.26 0.62 2.99 3.15 1.57 -
[1] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547. [2] 周琳,王子豪,文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报, 2019, 33(4): 042101.ZHOU L, WANG Z H, WEN H M. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. [3] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799 [4] ASAY J R, LIPKIN J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material [J]. Journal of Applied Physics, 1978, 49(7): 4242–4247. doi: 10.1063/1.325340 [5] ASAY J R, CHHABILDAS L C, DANDEKAR D P. Shear strength of shock-loaded polycrystalline tungsten [J]. Journal of Applied Physics, 1980, 51(9): 4774–4783. doi: 10.1063/1.328309 [6] CHHABILDAS L C, ASAY J R, BARKER L M. Shear strength of tungsten under shock and quasi-isentropic loading to 250 GPa:SAND-88-0306 [R].Sandia National Laboratories,1988. [7] 陈青山, 苗应刚, 郭亚洲, 等. 比较93钨合金材料的3种本构模型 [J]. 高压物理学报, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010CHEN Q S, MIAO Y G, GUO Y Z, et al. Comparative analysis of 3 constitutive models for 93 tungsten alloy [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010 [8] 朱锡. 921A钢动态屈服应力的实验研究 [J]. 海军工程学院学报, 1991(2): 43–48.ZHU X. Experimental study of dynamic yielding stress on “921A” steel [J]. Journal of Naval University of Engineering, 1991(2): 43–48. [9] 张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011 [10] HU J, ZHOU X, TAN H, et al. Successive phase transitions of tin under shock compression [J]. Applied Physics Letters, 2008, 92(11): 111905. doi: 10.1063/1.2898891 [11] 谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007. [12] 谭华. 高压声速测量与卸载路径 [J]. 爆轰波与冲击波, 2003, 2: 60–70. [13] 王贵林, 王治, 张朝辉, 等. 磁驱动准等熵压缩下单晶氟化锂的光学特性 [J]. 强激光与粒子束, 2014, 26(4): 210–216.WANG G L, WANG Z, ZHANG Z H, et al. Optical properties of single-crystal lithium fluoride window under magnetically driven quasi-isentropic compression [J]. High Power Laser and Particle Beams, 2014, 26(4): 210–216. [14] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980. [15] 华劲松. 高温高压下钨合金的本构方程研究 [D]. 绵阳: 中国工程物理研究院, 1999.