金属材料在极高应变率下的力学性能测试

王子豪 郑航 文鹤鸣

王子豪, 郑航, 文鹤鸣. 金属材料在极高应变率下的力学性能测试[J]. 高压物理学报, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794
引用本文: 王子豪, 郑航, 文鹤鸣. 金属材料在极高应变率下的力学性能测试[J]. 高压物理学报, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794
WANG Zihao, ZHENG Hang, WEN Heming. Determination of the Mechanical Properties of Metals at Very High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794
Citation: WANG Zihao, ZHENG Hang, WEN Heming. Determination of the Mechanical Properties of Metals at Very High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794

金属材料在极高应变率下的力学性能测试

doi: 10.11858/gywlxb.20190794
详细信息
    作者简介:

    王子豪(1994-),男,硕士,主要从事冲击动力学研究. E-mail:hwangzi@mail.ustc.edu.cn

    通讯作者:

    文鹤鸣(1965-),男,教授,主要从事冲击动力学研究. E-mail:hmwen@ustc.edu.cn

  • 中图分类号: O347.3

Determination of the Mechanical Properties of Metals at Very High Strain Rates

  • 摘要: 金属材料广泛应用于国防工业和民用工程中,了解金属材料在强动载荷作用下的力学性能对武器和防护结构的设计和评估具有重要意义。通过在二级轻气炮上进行平板撞击实验,测定了93钨合金和921A钢在极高应变率下的动态屈服强度,详细介绍了实验的设计原理和实验数据的分析方法,并利用公式对93钨合金和921A钢的动态屈服强度进行分析。实验结果表明:93钨合金在应变率(冲击压力)分别为1.7 × 105 s−1(49.5 GPa)和3.1 × 105 s−1(84.1 GPa)下的屈服强度分别为2.10 GPa和2.78 GPa;921A钢在应变率(冲击压力)为3.6 × 105 s−1(38.1 GPa)、4.7 × 105 s−1(62.4 GPa)和6.2 × 105 s−1(90.1 GPa)下的屈服强度分别为2.08 、2.67 和3.15 GPa;在极高应变率下93钨合金和921A钢的动态增强因子为2~3。

     

  • 图  加窗激光干涉测速技术测量声速示意图(实线表示冲击波,虚线表示追赶稀疏波)

    Figure  1.  Schematic diagram of the measurement of sound speed by windowed laser interferometry (Solid line indicates shock wave and broken line designates rarefaction wave)

    图  反向碰撞方法测量声速原理图(实线表示冲击波,虚线表示追赶稀疏波)

    Figure  2.  Schematic diagram of the measurement of sound speed by reverse impact (Solid line indicates shock wave and broken line designates rarefaction wave)

    图  双屈服面强度测量方法

    Figure  3.  Method for measuring technique to measure dynamic yield strength

    图  典型磁测速信号

    Figure  4.  Typical magnetic speed signals

    图  典型DPS光学信号

    Figure  5.  Typical DPS optical signals

    图  93钨合金和921A钢加载和卸载速度-时间历史

    Figure  6.  Loading and unloading velocity-time histories for 93 tungsten alloy and 921A steel

    图  93钨合金和921A钢阻抗匹配

    Figure  7.  Impedance-match for 93 tungsten alloy and 921A steel

    图  93钨合金和921A钢的声速-粒子速度拉格朗日分析

    Figure  8.  Lagrangian analysis of sound speed-particle velocity for 93 tungsten alloy and 921A steel

    图  93钨合金的DIF随应变率的变化

    Figure  9.  Variation of DIF with strain rate for 93 tungsten alloy

    图  10  921A钢的DIF随应变率的变化

    Figure  10.  Variation of DIF with strain rate for 921A steel

    表  1  93钨合金和921A钢的实验结果

    Table  1.   Test results for 93 tungsten alloy and 921A steel

    No.hs/mmvi/(km·s−1)pH/GPaG/GPaStrainStrain rates/106 s−1(τc + τ0)/GPaYH/GPaσd/GPa
    93W-13.2182.8249.51960.110.171.052.101.28
    93W-22.8924.2384.12540.170.312.262.781.54
    921A-12.8082.8838.11100.210.361.072.081.19
    921A-22.8234.0262.41410.220.472.622.671.44
    921A-32.8185.2090.11660.260.622.993.151.57
    下载: 导出CSV
  • [1] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547.
    [2] 周琳,王子豪,文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报, 2019, 33(4): 042101.

    ZHOU L, WANG Z H, WEN H M. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101.
    [3] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [4] ASAY J R, LIPKIN J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material [J]. Journal of Applied Physics, 1978, 49(7): 4242–4247. doi: 10.1063/1.325340
    [5] ASAY J R, CHHABILDAS L C, DANDEKAR D P. Shear strength of shock-loaded polycrystalline tungsten [J]. Journal of Applied Physics, 1980, 51(9): 4774–4783. doi: 10.1063/1.328309
    [6] CHHABILDAS L C, ASAY J R, BARKER L M. Shear strength of tungsten under shock and quasi-isentropic loading to 250 GPa:SAND-88-0306 [R].Sandia National Laboratories,1988.
    [7] 陈青山, 苗应刚, 郭亚洲, 等. 比较93钨合金材料的3种本构模型 [J]. 高压物理学报, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010

    CHEN Q S, MIAO Y G, GUO Y Z, et al. Comparative analysis of 3 constitutive models for 93 tungsten alloy [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010
    [8] 朱锡. 921A钢动态屈服应力的实验研究 [J]. 海军工程学院学报, 1991(2): 43–48.

    ZHU X. Experimental study of dynamic yielding stress on “921A” steel [J]. Journal of Naval University of Engineering, 1991(2): 43–48.
    [9] 张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011

    ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011
    [10] HU J, ZHOU X, TAN H, et al. Successive phase transitions of tin under shock compression [J]. Applied Physics Letters, 2008, 92(11): 111905. doi: 10.1063/1.2898891
    [11] 谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007.
    [12] 谭华. 高压声速测量与卸载路径 [J]. 爆轰波与冲击波, 2003, 2: 60–70.
    [13] 王贵林, 王治, 张朝辉, 等. 磁驱动准等熵压缩下单晶氟化锂的光学特性 [J]. 强激光与粒子束, 2014, 26(4): 210–216.

    WANG G L, WANG Z, ZHANG Z H, et al. Optical properties of single-crystal lithium fluoride window under magnetically driven quasi-isentropic compression [J]. High Power Laser and Particle Beams, 2014, 26(4): 210–216.
    [14] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
    [15] 华劲松. 高温高压下钨合金的本构方程研究 [D]. 绵阳: 中国工程物理研究院, 1999.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  7490
  • HTML全文浏览量:  3248
  • PDF下载量:  84
出版历程
  • 收稿日期:  2019-06-19
  • 修回日期:  2019-07-25

目录

    /

    返回文章
    返回