Impulsive Resistance of Metallic Honeycomb Sandwich Structures Subjected to Underwater Impulsive Loading
-
摘要: 为揭示高强度水下爆炸冲击载荷作用下金属夹芯结构的抗冲击性能,在实验室开展小尺寸水下爆炸加载技术对金属蜂窝夹芯结构性能影响的实验研究。基于实验结果,开展了全尺寸数值模拟金属蜂窝夹芯结构在水下冲击载荷作用下的动态响应和抗冲击性能研究。结果表明,数值模拟、实验和理论模型计算的结果具有良好的一致性。由于蜂窝芯材相对密度对夹芯结构能量耗散方式和载荷传递机制的影响,结构动态响应、失效模式以及抗冲击性能随着冲击强度的变化表现出较为明显的不同。通过抗冲击参数分析,建立了反映金属蜂窝夹芯结构抗冲击性能的结构横向变形、固支反力、透射脉冲和塑性能耗随冲击强度和芯材相对密度变化的结构-载荷-性能量化关系。Abstract: To investigate the blast-resistant performance of metallic sandwich structures subjected to intensive underwater impulsive loading, the lab-scaled underwater explosive simulator is employed to conduct water-based impulsive loading on metallic honeycomb sandwich structures. Based on the completed experimental study, this paper conducts a numerical investigation on the dynamic response and blast resistance of the metallic honeycomb sandwich structures subjected to intensive underwater impulsive loading. The results show that the comparison among the numerical simulation, experiments, and analytical solutions shows a good agreement in terms of dynamic response and transverse deflections. For the different honeycomb sandwich with identical thickness, the dynamic responses, failure modes, and blast-resistant performances of sandwich panels are shown different characteristics due to the energy absorption and loading transferring caused by the relative core densities. The impulsive resistance in terms of dynamic deformation, transverse deflection, reaction force, transmitted impulse and plastic energy dissipation is evaluated in relation to the load intensity and the relative core density. Quantitative structure-load-performance relation is carried out to facilitate the advanced study on the structures and provides guidance for structural design.
-
表 1 面板和芯材材料力学性能参数
Table 1. Mechanical parameters of aluminum materials
Materials Young’s modulus/GPa Density/(kg·m−3) Parameters A/MPa B/MPa C n 5A06 aluminium alloy 74.0 2 780 167.0 443.7 0.020 0.44 3003 aluminium alloy 74.2 2 700 85.2 170.0 0.038 0.44 表 2 Mie-Grüneisen状态方程参数
Table 2. Parameters for the Mie-Grüneisen equation of state
Density/(kg·m−3) Sound speed in water/(m·s−1) γ 1 000 1 106 0.05 -
[1] WADLEY H, DHARMASENA K, CHEN Y, et al. Compressive response of multilayered pyramidal lattices during underwater shock loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1102–1114. doi: 10.1016/j.ijimpeng.2007.06.009 [2] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. doi: 10.1115/1.1629109 [3] DESHPANDE V S, FLECK N A. One-dimensional response of sandwich plates to underwater shock loading [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2347–2383. doi: 10.1016/j.jmps.2005.06.006 [4] MCSHANE G J, DESHPANDE V S, FLECK N A. The underwater blast resistance of metallic sandwich beams with prismatic lattice cores [J]. Journal of Applied Mechanics, 2007, 74(2): 352–364. doi: 10.1115/1.2198549 [5] HUANG W, ZHANG W, YE N, et al. Dynamic response and failure of PVC foam core metallic sandwich subjected to underwater impulsive loading [J]. Composites Part B: Engineering, 2016, 97: 226–238. doi: 10.1016/j.compositesb.2016.05.015 [6] HUANG W, ZHANG W, HUANG X L, et al. Dynamic response of aluminum corrugated sandwich subjected to underwater impulsive loading: experiment and numerical modeling [J]. International Journal of Impact Engineering, 2017, 109: 78–91. doi: 10.1016/j.ijimpeng.2017.06.002 [7] HUANG W, ZHANG W, CHEN T, et al. Dynamic response of circular composite laminates subjected to underwater impulsive loading [J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 63–74. doi: 10.1016/j.compositesa.2018.02.043 [8] AVACHAT S, ZHOU M. High-speed digital imaging and computational modeling of dynamic failure in composite structures subjected to underwater impulsive loads [J]. International Journal of Impact Engineering, 2015, 77: 147–165. doi: 10.1016/j.ijimpeng.2014.11.008 [9] TAYLOR G. The pressure and impulse of submarine explosion waves on plates [M]//BATCHELOR G K. The Scientific Papers of Sir Geoffrey Ingram Taylor. Cambridge: Cambridge University Press, 1963: 287–303. [10] LEE S, BARTHELAT F, HUTCHINSON J W, et al. Dynamic failure of metallic pyramidal truss core materials-experiments and modeling [J]. International Journal of Plasticity, 2006, 22(11): 2118–2145. doi: 10.1016/j.ijplas.2006.02.006 [11] MCSHANE G J, RADFORD D D, DESHPANDE V S, et al. The response of clamped sandwich plates with lattice cores subjected to shock loading [J]. European Journal of Mechanics A Solids, 2006, 25(2): 215–229. doi: 10.1016/j.euromechsol.2005.08.001 [12] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243–2259. doi: 10.1016/j.ijsolstr.2005.07.006 [13] QIN Q H, WANG T J, ZHAO S Z. Large deflections of metallic sandwich and monolithic beams under locally impulsive loading [J]. International Journal of Mechanical Sciences, 2009, 51(11/12): 752–773. [14] CUI X D, ZHAO L M, WANG Z H, et al. Dynamic response of metallic lattice sandwich structures to impulsive loading [J]. International Journal of Impact Engineering, 2012, 43: 1–5. doi: 10.1016/j.ijimpeng.2011.11.004 [15] HUANG W, ZHANG W, LI D C, et al. Analytical model of the dynamic response of clamped metallic sandwich beam subjected to underwater impulsive loading [J]. Marine Structures, 2019, 63: 333–350. doi: 10.1016/j.marstruc.2018.08.008 [16] 任鹏, 张伟, 刘建华, 等. 高强度水下爆炸等效冲击波加载特性研究 [J]. 兵工学报, 2015, 36(4): 716–722. doi: 10.3969/j.issn.1000-1093.2015.04.021REN P, ZHANG W, LIU J H, et al. Characteristics of high strength underwater explosion equivalent shock loading [J]. Acta Armamentarii, 2015, 36(4): 716–722. doi: 10.3969/j.issn.1000-1093.2015.04.021 [17] 任鹏, 张伟, 黄威, 等. 非药式水下爆炸冲击波加载装置研究 [J]. 爆炸与冲击, 2014, 34(3): 334–339. doi: 10.11883/1001-1455(2014)03-0334-06REN P, ZHANG W, HUANG W, et al. Research on non-explosive underwater shock loading device [J]. Explosion and Shock Waves, 2014, 34(3): 334–339. doi: 10.11883/1001-1455(2014)03-0334-06 [18] HUANG W, ZHANG W, LI D C, et al. Dynamic failure of honeycomb-core sandwich structures subjected to underwater impulsive loads [J]. European Journal of Mechanics A Solids, 2016, 60: 39–51. doi: 10.1016/j.euromechsol.2016.06.006 [19] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021–1041. doi: 10.1098/rspa.2005.1604 [20] ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. doi: 10.1007/s11340-006-0296-7 [21] HUANG W, ZHANG W, REN P, et al. An experimental investigation of water-filled tank subjected to horizontal high speed impact [J]. Experimental Mechanics, 2015, 55(6): 1123–1138. doi: 10.1007/s11340-015-0012-6 [22] TILBROOK M T, DESHPANDE V S, FLECK N A. Underwater blast loading of sandwich beams: regimes of behaviour [J]. International Journal of Solids and Structures, 2009, 46(17): 3209–3221. doi: 10.1016/j.ijsolstr.2009.04.012