金属蜂窝夹芯结构抗水下冲击性能

李汶蔚 黄威

李汶蔚, 黄威. 金属蜂窝夹芯结构抗水下冲击性能[J]. 高压物理学报, 2020, 34(3): 035102. doi: 10.11858/gywlxb.20190790
引用本文: 李汶蔚, 黄威. 金属蜂窝夹芯结构抗水下冲击性能[J]. 高压物理学报, 2020, 34(3): 035102. doi: 10.11858/gywlxb.20190790
LI Wenwei, HUANG Wei. Impulsive Resistance of Metallic Honeycomb Sandwich Structures Subjected to Underwater Impulsive Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 035102. doi: 10.11858/gywlxb.20190790
Citation: LI Wenwei, HUANG Wei. Impulsive Resistance of Metallic Honeycomb Sandwich Structures Subjected to Underwater Impulsive Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 035102. doi: 10.11858/gywlxb.20190790

金属蜂窝夹芯结构抗水下冲击性能

doi: 10.11858/gywlxb.20190790
基金项目: 国家自然科学基金(11802100)
详细信息
    作者简介:

    李汶蔚(1985-),男,硕士,副研究员,主要从事爆轰物理研究. Email:wenweili@gmail.com

    通讯作者:

    黄 威(1987-),男,博士,讲师,主要从事冲击动力学研究. E-mail:weihuang@hust.edu.cn

  • 中图分类号: O347

Impulsive Resistance of Metallic Honeycomb Sandwich Structures Subjected to Underwater Impulsive Loading

  • 摘要: 为揭示高强度水下爆炸冲击载荷作用下金属夹芯结构的抗冲击性能,在实验室开展小尺寸水下爆炸加载技术对金属蜂窝夹芯结构性能影响的实验研究。基于实验结果,开展了全尺寸数值模拟金属蜂窝夹芯结构在水下冲击载荷作用下的动态响应和抗冲击性能研究。结果表明,数值模拟、实验和理论模型计算的结果具有良好的一致性。由于蜂窝芯材相对密度对夹芯结构能量耗散方式和载荷传递机制的影响,结构动态响应、失效模式以及抗冲击性能随着冲击强度的变化表现出较为明显的不同。通过抗冲击参数分析,建立了反映金属蜂窝夹芯结构抗冲击性能的结构横向变形、固支反力、透射脉冲和塑性能耗随冲击强度和芯材相对密度变化的结构-载荷-性能量化关系。

     

  • 图  高强度水下冲击加载实验装置示意图(a)和数值分析模型(b)

    Figure  1.  Intensive underwater explosive simulator (a) and the numerical model (b)

    图  蜂窝夹芯结构准静态压缩下的应力-应变关系

    Figure  2.  Stress-strain relationship compression of honeycomb sandwich structure under quasi-static compression

    图  实验和数值模拟的失效模式对比

    Figure  3.  Comparison of the deformation modes obtained from the simulation and experiment

    图  蜂窝夹芯结构背板中点变形时程曲线(a)和最大变形与冲击强度的关系(b)

    Figure  4.  Mid-point deflection history of honeycomb sandwish structure (a) and relationship between impulsive intensities and maximum deflection (b)

    图  蜂窝夹芯结构在${10^3}{\overline I _{\rm{t}}}$ = 3.58作用下的等效应变分布和塑性铰运动

    Figure  5.  Dynamic deformation and propagation of plastic hinges of the honeycomb sandwich,${10^3}{\overline I _{\rm{t}}} $ = 3.58

    图  蜂窝夹芯结构前后面板中点的速度响应过程

    Figure  6.  Velocity time history at the mid-point of front and back face-sheet of honeycomb sandwich structure

    图  相同冲击强度下不同芯材相对密度的蜂窝夹芯结构等效应力分布

    Figure  7.  Equivalent strain distribution of honeycomb sandwich under the same impact loading

    图  蜂窝夹芯结构横向变形与冲击强度及芯材相对密度的关系

    Figure  8.  The relationship of transverse deflections for honeycomb sandwich structure load intensity and relative core density

    图  夹芯结构支座的反力时程曲线

    Figure  9.  Reaction forces time histories for sandwich panels

    图  10  夹芯结构透射脉冲强度与冲击强度及几何特性的关系

    Figure  10.  Relationship of transmitted impulses to incident impulse intensity and geometries

    图  11  蜂窝夹芯结构各部分的塑性能耗时程曲线(a)及塑性能耗与冲击强度和芯材相对密度关系(b)

    Figure  11.  Plastic dissipation histories at different places of honeycomb sandwich structure (a) and the relationship of plastic dissipations to incident impulse intensity and relative core density (b)

    表  1  面板和芯材材料力学性能参数

    Table  1.   Mechanical parameters of aluminum materials

    MaterialsYoung’s modulus/GPaDensity/(kg·m−3)Parameters
    A/MPaB/MPaCn
    5A06 aluminium alloy74.02 780167.0443.70.0200.44
    3003 aluminium alloy74.22 700 85.2170.00.0380.44
    下载: 导出CSV

    表  2  Mie-Grüneisen状态方程参数

    Table  2.   Parameters for the Mie-Grüneisen equation of state

    Density/(kg·m−3)Sound speed in water/(m·s−1)γ
    1 0001 1060.05
    下载: 导出CSV
  • [1] WADLEY H, DHARMASENA K, CHEN Y, et al. Compressive response of multilayered pyramidal lattices during underwater shock loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1102–1114. doi: 10.1016/j.ijimpeng.2007.06.009
    [2] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. doi: 10.1115/1.1629109
    [3] DESHPANDE V S, FLECK N A. One-dimensional response of sandwich plates to underwater shock loading [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2347–2383. doi: 10.1016/j.jmps.2005.06.006
    [4] MCSHANE G J, DESHPANDE V S, FLECK N A. The underwater blast resistance of metallic sandwich beams with prismatic lattice cores [J]. Journal of Applied Mechanics, 2007, 74(2): 352–364. doi: 10.1115/1.2198549
    [5] HUANG W, ZHANG W, YE N, et al. Dynamic response and failure of PVC foam core metallic sandwich subjected to underwater impulsive loading [J]. Composites Part B: Engineering, 2016, 97: 226–238. doi: 10.1016/j.compositesb.2016.05.015
    [6] HUANG W, ZHANG W, HUANG X L, et al. Dynamic response of aluminum corrugated sandwich subjected to underwater impulsive loading: experiment and numerical modeling [J]. International Journal of Impact Engineering, 2017, 109: 78–91. doi: 10.1016/j.ijimpeng.2017.06.002
    [7] HUANG W, ZHANG W, CHEN T, et al. Dynamic response of circular composite laminates subjected to underwater impulsive loading [J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 63–74. doi: 10.1016/j.compositesa.2018.02.043
    [8] AVACHAT S, ZHOU M. High-speed digital imaging and computational modeling of dynamic failure in composite structures subjected to underwater impulsive loads [J]. International Journal of Impact Engineering, 2015, 77: 147–165. doi: 10.1016/j.ijimpeng.2014.11.008
    [9] TAYLOR G. The pressure and impulse of submarine explosion waves on plates [M]//BATCHELOR G K. The Scientific Papers of Sir Geoffrey Ingram Taylor. Cambridge: Cambridge University Press, 1963: 287–303.
    [10] LEE S, BARTHELAT F, HUTCHINSON J W, et al. Dynamic failure of metallic pyramidal truss core materials-experiments and modeling [J]. International Journal of Plasticity, 2006, 22(11): 2118–2145. doi: 10.1016/j.ijplas.2006.02.006
    [11] MCSHANE G J, RADFORD D D, DESHPANDE V S, et al. The response of clamped sandwich plates with lattice cores subjected to shock loading [J]. European Journal of Mechanics A Solids, 2006, 25(2): 215–229. doi: 10.1016/j.euromechsol.2005.08.001
    [12] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243–2259. doi: 10.1016/j.ijsolstr.2005.07.006
    [13] QIN Q H, WANG T J, ZHAO S Z. Large deflections of metallic sandwich and monolithic beams under locally impulsive loading [J]. International Journal of Mechanical Sciences, 2009, 51(11/12): 752–773.
    [14] CUI X D, ZHAO L M, WANG Z H, et al. Dynamic response of metallic lattice sandwich structures to impulsive loading [J]. International Journal of Impact Engineering, 2012, 43: 1–5. doi: 10.1016/j.ijimpeng.2011.11.004
    [15] HUANG W, ZHANG W, LI D C, et al. Analytical model of the dynamic response of clamped metallic sandwich beam subjected to underwater impulsive loading [J]. Marine Structures, 2019, 63: 333–350. doi: 10.1016/j.marstruc.2018.08.008
    [16] 任鹏, 张伟, 刘建华, 等. 高强度水下爆炸等效冲击波加载特性研究 [J]. 兵工学报, 2015, 36(4): 716–722. doi: 10.3969/j.issn.1000-1093.2015.04.021

    REN P, ZHANG W, LIU J H, et al. Characteristics of high strength underwater explosion equivalent shock loading [J]. Acta Armamentarii, 2015, 36(4): 716–722. doi: 10.3969/j.issn.1000-1093.2015.04.021
    [17] 任鹏, 张伟, 黄威, 等. 非药式水下爆炸冲击波加载装置研究 [J]. 爆炸与冲击, 2014, 34(3): 334–339. doi: 10.11883/1001-1455(2014)03-0334-06

    REN P, ZHANG W, HUANG W, et al. Research on non-explosive underwater shock loading device [J]. Explosion and Shock Waves, 2014, 34(3): 334–339. doi: 10.11883/1001-1455(2014)03-0334-06
    [18] HUANG W, ZHANG W, LI D C, et al. Dynamic failure of honeycomb-core sandwich structures subjected to underwater impulsive loads [J]. European Journal of Mechanics A Solids, 2016, 60: 39–51. doi: 10.1016/j.euromechsol.2016.06.006
    [19] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021–1041. doi: 10.1098/rspa.2005.1604
    [20] ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. doi: 10.1007/s11340-006-0296-7
    [21] HUANG W, ZHANG W, REN P, et al. An experimental investigation of water-filled tank subjected to horizontal high speed impact [J]. Experimental Mechanics, 2015, 55(6): 1123–1138. doi: 10.1007/s11340-015-0012-6
    [22] TILBROOK M T, DESHPANDE V S, FLECK N A. Underwater blast loading of sandwich beams: regimes of behaviour [J]. International Journal of Solids and Structures, 2009, 46(17): 3209–3221. doi: 10.1016/j.ijsolstr.2009.04.012
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  6328
  • HTML全文浏览量:  3310
  • PDF下载量:  42
出版历程
  • 收稿日期:  2019-06-10
  • 修回日期:  2019-06-27
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回