Effects of Carbon on (Mg,Fe)SiO3 Bridgmanite under the Lower Mantle Pressure-Temperature Conditions
-
摘要: 利用激光加温金刚石对顶砧技术模拟下地幔温压条件(36~88 GPa, 1 850~2 800 K),探索了碳与含铁的(Mg,Fe)SiO3布里奇曼石的相互作用过程。同步辐射X射线衍射实验表明,(Mg,Fe)SiO3布里奇曼石与碳在大于42 GPa、2 000 K的温压条件下发生了氧化还原反应,即(Mg,Fe)SiO3布里奇曼石中的二价铁(Fe2+)被单质碳还原成金属铁(Fe0);而在较低的温压条件下,布里奇曼石中的Fe2+可以稳定存在。该结果表明,在下地幔深部的温压条件下,CCO缓冲的氧逸度值比IW缓冲更低,热力学计算结果也证实了这一结果。实验结果为地幔深部氧化还原条件的不均一性和局部极端还原状态的出现提供了解释。Abstract: In this study we investigated the interaction of carbon with iron in the (Mg,Fe)SiO3 bridgmanite under the conditions corresponding to the Earth’s lower mantle (36–88 GPa, 1 850–2 800 K) using a laser-heated diamond anvil cell. Synchrotron X-ray diffraction measurements of the run products showed that Fe2+ in bridgmanite can be reduced to metallic Fe by carbon under the pressure and temperature conditions higher than 42 GPa and 2 000 K. The coexisting metallic Fe and Fe-depleted bridgmanite in the run products suggests that the CCO buffer produces lower oxygen fugacity than the of Fe-FeO (IW) buffer, which is further confirmed by the thermodynamic calculation. The experimental results in this study could provide a potential explanation for the presence of redox heterogeneities and highly reducing regions in the deep mantle.
-
Key words:
- bridgmanite /
- deep carbon /
- lower mantle /
- redox reaction
-
图 2 样品Sa104-1在88 GPa的高压原位(a)和卸载至常温常压(b)的XRD谱 (Bdg、CS、Stv分别代表布里奇曼石、CaCl2型结构的SiO2、斯石英,hcp和bcc分别代表六方密堆积结构和体心立方结构的金属铁。高压下的XRD谱中没有发现相应压力下hcp-Fe [24]的衍射峰。)
Figure 2. XRD patterns of Sa104-1 at 88 GPa (a) and ambient conditions (b), respectively (Bdg=bridgmanite, CS=silica with the CaCl2–type structure, Stv=stishovite, hcp=iron with the hexagonal close-packed structure, bcc=iron with the body-centered cubic structure. Diffraction peaks of the hcp-Fe [24] were not observed in the high-pressure XRD pattern.)
图 3 Sa104-3样品在 36 GPa高压原位(a)和卸载至常温常压(b)的XRD谱(Bdg代表布里奇曼石,Stv代表斯石英,hcp和bcc分别指代六方密堆积结构和体心立方结构的金属铁。高压下或复原至常温常压后所采集的XRD谱中均没有观测到hcp-Fe或bcc-Fe [24]的衍射峰。)
Figure 3. XRD patterns of Sa104-3 at 36 GPa (a) and ambient conditions (b), respectively (Bdg=bridgmanite, CS=silica with the CaCl2–type structure, Stv=stishovite, hcp=iron with the hexagonal close-packed structure, bcc=iron with the body-centered cubic structure. Diffraction peaks of either hcp-Fe or bcc-Fe [24] were not observed in the XRD patterns.)
图 4 在两种不同温压条件下合成的布里奇曼石在卸压过程中的p-V关系:(a)在88 GPa、2 400 K温压条件下合成的Sa104-1样品;(b)在36 GPa、1 850 K温压条件下合成的Sa104-3样品
Figure 4. p-V relations on decompression of two bridgmanite samples synthesized under two different p-T conditions, respectively: (a) sample Sa104-1 synthesized under 88 GPa and 2 400 K; (b) sample Sa104-3 synthesized under 36 GPa and 1 850 K
表 1 含碳的Mg0.85Fe0.15SiOx凝胶样品合成条件和实验产物
Table 1. Experimental condition and run products of Mg0.85Fe0.15SiOx gel (carbon bearing)
Sample p/GPa T/K Pressure medium Pressure marker Run products In situ Ambient Sa104-1 88(1) 2 400(100) Ne Ne Bdg, CS Bdg, Stv, bcc-Fe Sa82-1 43(1) 2 800(200) SiO2 Au Bdg, Stv Bdg, Stv, bcc-Fe Sa104-2 42(1) 2 000(100) SiO2 Au Bdg, Stv Bdg, Stv, bcc-Fe Sa104-3 35(1) 1 850(100) Ne Ne Bdg, Stv Bdg, Stv Notes: (1) Pressures were determined by the equations of state of Ne or Au[21] after T quench, respectively;
(2) Run products were identified by power XRD under high pressure and ambient conditions, respectively;
(3) Bdg=bridgmanite, CS= silica with CaCl2-type structure, Stv=stishovite, bcc-Fe=metallic iron with body-centered cubic structure.表 2 不同条件下合成的布里奇曼石的晶胞参数在卸压中随压力的变化
Table 2. Pressure-dependent unit-cell lattice parameters of bridgmanite synthesized under different pressure-temperature (p-T) conditions
Sample p/GPa a/Å b/Å c/Å V/Å3 Sa104-1 88(1) 4.395(1) 4.624(1) 6.386(2) 129.79(4) 87(1) 4.404(1) 4.624(1) 6.391(1) 130.13(3) 82(1) 4.417(1) 4.640(1) 6.410(1) 131.37(3) 80(1) 4.420(1) 4.646(1) 6.422(2) 131.88(5) 71(1) 4.446(1) 4.673(1) 6.470(3) 134.38(5) Room pressure 4.778(2) 4.929(2) 6.899(3) 162.46(7) Sa82-1 43(1) 4.557(1) 4.742(1) 6.591(1) 142.42(3) Room pressure 4.790(1) 4.922(1) 6.898(4) 162.62(7) Sa104-2 42(1) 4.530(1) 4.707(1) 6.641(1) 141.59(3) Room pressure 4.779(1) 4.932(1) 6.898(1) 162.56(3) Sa104-3 36(1) 4.597(1) 4.773(1) 6.643(1) 145.73(3) 33(1) 4.601(1) 4.793(1) 6.653(1) 146.70(4) 20(1) 4.677(1) 4.836(1) 6.758(2) 152.83(4) 17(1) 4.747(1) 4.828(1) 6.721(2) 153.72(5) 14(1) 4.701(1) 4.868(1) 6.779(1) 155.15(3) Room pressure 4.789(1) 4.938(1) 6.908(1) 163.36(3) Note: (1) Pressures were determined by the equations of state of Ne or Au[21] after T quench;
(2) The data were collected along the decompression path.表 3 热状态方程参数
Table 3. Parameters for thermal equation of state
Material V0/(cm3·mol–1) K0/GPa $ {K_0'}$ γ0 q θ /K Ref. FeSiO3(Bdg) 25.400 272 4.1 1.44 1.4 765 [47] FeO(B1) 12.256 146.9 4.0 1.42 1.3 380 [42] SiO2(Stv) 14.017 302 5.24 1.71 1.0 1 109 [48] SiO2(CS) 14.017 341 3.2 2.14 1.0 1 109 [48] Note: (1) V0–volume at ambient conditions, K0–bulk modulus, ${K_0'}$–pressure derivative of K0, γ0–Grüneisen parameter at ambient conditions, q–logarithmic volume derivative of the Grüneisen parameter, θ–Debye temperature;
(2) K0 and ${K_0'}$ are parameters for Birch-Murnaghan equation of state, and γ0, q0 and θ are parameters used for Mie-Grüneisen relation. -
[1] FROST D J, MCCAMMON C A. The redox state of Earth’s mantle [J]. Annual Review of Earth and Planetary Sciences, 2008, 36(1): 389–420. doi: 10.1146/annurev.earth.36.031207.124322 [2] STAGNO V, FROST D J. Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages [J]. Earth and Planetary Science Letters, 2010, 300(1/2): 72–84. [3] LITASOV K D, SHATSKIY A. Carbon-bearing magmas in the Earth’s deep interior [M]//Magmas Under Pressure. Amsterdam: Elsevier, 2018: 43–82. [4] DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide [J]. Nature, 2015, 440(7084): 659–662. [5] ROHRBACH A, SCHMIDT M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling [J]. Nature, 2011, 472(7342): 209–212. doi: 10.1038/nature09899 [6] DASGUPTA R, HIRSCHMANN M M. The deep carbon cycle and melting in Earth’s interior [J]. Earth & Planetary Science Letters, 2010, 298(1/2): 1–13. [7] SAAL A E, HAURI E H, LANGMUIR C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle [J]. Nature, 2002, 419(6906): 451–455. doi: 10.1038/nature01073 [8] HIRSCHMANN M M, DASGUPTA R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles [J]. Chemical Geology, 2009, 262(1/2): 4–16. [9] DASGUPTA R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183–229. doi: 10.2138/rmg.2013.75.7 [10] HAZEN R M, DOWNS R T, JONES A P, et al. Carbon mineralogy and crystal chemistry [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 7–46. doi: 10.2138/rmg.2013.75.2 [11] LEUNG I S. Silicon carbide cluster entrapped in a diamond from Fuxian, China [J]. American Mineralogist, 1990, 75(9/10): 1110–1119. [12] SCHRAUDER M, NAVON O. Solid carbon dioxide in a natural diamond [J]. Nature, 1993, 365(6441): 42–44. doi: 10.1038/365042a0 [13] KAMINSKY F. Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond [J]. Earth-Science Review, 2012, 110(1/2/3/4): 127–147. doi: 10.1016/j.earscirev.2011.10.005 [14] SMITH E M, SHIREY S B, NESTOLA F, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle [J]. Science, 2016, 354(6318): 1403. doi: 10.1126/science.aal1303 [15] STAGNO V, TANGE Y, MIYAJIMA N, et al. The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity [J]. Geophysical Research Letters, 2011, 38(19): 570–583. [16] MAEDA F, OHTANI E, KAMADA S, et al. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2 [J]. Scientific Reports, 2017, 7: 40602. doi: 10.1038/srep40602 [17] LI X, ZHANG Z, LIN J F, et al. New high pressure phase of CaCO3 at the topmost lower mantle: Implication for the deep mantle carbon transportation [J]. Geophysical Research Letters, 2018, 45: 1355–1360. doi: 10.1002/2017GL076536 [18] MARTIROSYAN N S, LITASOV K D, LOBANOV S S, et al. The Mg-carbonate-Fe interaction: implication for the fate of subducted carbonates and formation of diamond in the lower mantle [J]. Geoscience Frontiers, 2019, 10(4): 1449–1458. doi: 10.1016/j.gsf.2018.10.003 [19] DORFMAN S M, BADRO J, NABIEI F, et al. Carbonate stability in the reduced lower mantle [J]. Earth and Planetary Science Letters, 2018, 489: 84–91. doi: 10.1016/j.jpgl.2018.02.035 [20] HAMILTON D L. The preparation of silicate compositions by a gelling method [J]. Mineralogical Magazine, 1968, 36(282): 832–838. doi: 10.1180/minmag.1968.036.282.11 [21] YINGWEI F, ANGELE R, MARK F, et al. Toward an internally consistent pressure scale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9182–9186. doi: 10.1073/pnas.0609013104 [22] CAMPBELL A J, DANIELSON L, RIGHTER K, et al. High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers [J]. Earth and Planetary Science Letters, 2009, 286(3/4): 556–564. [23] MENG Y, HRUBIAK R, ROD E, et al. New developments in laser-heated diamond anvil cell with in situ synchrotron X-ray diffraction at High Pressure Collaborative Access Team [J]. Review of Scientific Instruments, 2015, 86(7): 072201. doi: 10.1063/1.4926895 [24] PRAKAPENKA V B, KUBO A, KUZNETSOV A, et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium [J]. High Pressure Research, 2008, 28(3): 225–235. doi: 10.1080/08957950802050718 [25] HOLLAND T J B, REDFERN S A T. Unit cell refinement from powder diffraction data: the use of regression diagnostics [J]. Mineralogical Magazine, 1997, 61(404): 65–77. doi: 10.1180/minmag.1997.061.404.07 [26] BOFFA-BALLARAN T, KURNOSOV A, GLAZYRIN K, et al. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 181–190. doi: 10.1016/j.jpgl.2012.03.029 [27] DORFMAN S M, MENG Y, PRAKAPENKA V B, et al. Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite [J]. Earth and Planetary Science Letters, 2013, 361(1): 249–257. [28] KUDOH Y, PREWITT C T, FINGER L W, et al. Effect of iron on the crystal structure of (Mg,Fe)SiO3 perovskite [J]. Geophysical Research Letters, 1990, 17(10): 1481–1484. doi: 10.1029/GL017i010p01481 [29] FEI Y, WANG Y, FINGER L W. Maximum solubility of FeO in (Mg, Fe)SiO3-perovskite as a function of temperature at 26 GPa: implication for FeO content in the lower mantle [J]. Journal of Geophysical Research Solid Earth, 1996, 101(B5): 11525–11530. doi: 10.1029/96JB00408 [30] LUNDIN S, CATALLI K, J. SANTILLÁN, et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar [J]. Physics of the Earth and Planetary Interiors, 2008, 168(1): 97–102. [31] ITO E, YAMADA H. Stability relations of silicate spinels, ilmenites, and perovskites [M]//High Pressure Research in Geophysics. Tokyo: Center for Publication, 1982: 405-419. [32] MAO H K, HEMLEY R J, FEI Y, et al. Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B5). [33] WANG Y, WEIDENER D J, LIEBERMANN R C, et al. P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle [J]. Physics of the Earth and Planetary Interiors, 1996, 83(1): 13–40. [34] FIQUET G, ANDRAULT D, DEWAELE A, et al. P-V-T, equation of state of MgSiO3, perovskite [J]. Physics of the Earth & Planetary Interiors, 1998, 105(1/2): 21–31. [35] TANGE Y, TAKAHASHI E, NISHIHARA Y, et al. Phase relations in the system MgO-FeO-SiO2 to 50 GPa and 2 000 ℃: an application of experimental techniques using multianvil apparatus with sintered diamond anvils [J]. Journal of Geophysical Research Solid Earth, 2009, 114(B2): 1–14. [36] ANDRAULT D, BOLFAN-CASANOVA N, GUIGNOT N. Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite [J]. Earth and Planetary Science Letters, 2001, 193(3/4): 501–508. [37] FROST D J, LIEBSKE C, LANGENHORST F, et al. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle [J]. Nature, 2004, 428(6981): 409–412. doi: 10.1038/nature02413 [38] MCCAMMON C A. The crystal chemistry of ferric iron in Fe0.05Mg0.95SiO3 perovskite as determined by Mössbauer spectroscopy in the temperature range 80–293 K [J]. Physics & Chemistry of Minerals, 1998, 25(4): 292–300. [39] MCCAMMON C A, LAUTERBACH S, SEIFERT F, et al. Iron oxidation state in lower mantle mineral assemblages: I. empirical relations derived from high-pressure experiments [J]. Earth and Planetary Science Letters, 2004, 222(2): 435–449. doi: 10.1016/j.jpgl.2004.03.018 [40] IOTA V, YOO C S, CYNN H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures [J]. Science, 1999, 283(5407): 1510–1513. doi: 10.1126/science.283.5407.1510 [41] TSCHAUNER O, MAO H K, HEMLEY R J. New Transformations of CO2 at high pressures and temperatures [J]. Physical Review Letters, 2001, 87(7): 075701. doi: 10.1103/PhysRevLett.87.075701 [42] LITASOV K D, GONCHAROV A F, HEMLEY R J. Crossover from melting to dissociation of CO2 under pressure: implications for the lower mantle [J]. Earth & Planetary Science Letters, 2011, 309(3/4): 318–323. [43] BOATES B, TEWELDEBERHAN A M, BONEV S A. Stability of dense liquid carbon dioxide [J]. Proceedings of the National Academy of Sciences, 2012, 109(37): 14808–14812. doi: 10.1073/pnas.1120243109 [44] TEWELDEBERHAN A M, BOATES B, BONEV S A. CO2 in the mantle: melting and solid–solid phase boundaries [J]. Earth and Planetary Science Letters, 2013, 373: 228–232. doi: 10.1016/j.jpgl.2013.05.008 [45] DZIUBEK K F, MARTIN E, DEMETRIO S, et al. Crystalline polymeric carbon dioxide stable at megabar pressures [J]. Nature Communications, 2018, 9(1): 3148. doi: 10.1038/s41467-018-05593-8 [46] HOLLAND T J B, POWELL R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids [J]. Journal of Metamorphic Geology, 2011, 29: 333–383. doi: 10.1111/j.1525-1314.2010.00923.x [47] XU W, LITHGOW-BERTELLONI C, STIXRUDE L, et al. The effect of bulk composition and temperature on mantle seismic structure [J]. Earth and Planetary Science Letters, 2008, 275(1/2): 70–79. [48] FISCHER R A, CAMPBELL A J, CHIDESTER B A, et al. Equations of state and phase boundary for stishovite and CaCl2-type SiO2 [J]. American Mineralogist, 2018, 103(5): 792–802. doi: 10.2138/am-2018-6267 [49] NAKAJIMA Y, FROST D J, RUBIE D C. Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle [J]. Journal of Geophysical Research Solid Earth, 2012, 117: B08201. [50] FROST D J, WOOD B J. Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1 650 ℃ [J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1565–1574. doi: 10.1016/S0016-7037(97)00035-5 [51] WILDING M C, HARTE B, HARRIS J W. Evidence for a deep origin for Sao Luiz diamonds [C]//Fifth International Kimberlite Conference, 1991. [52] KLEIN-BENDAVID O, WIRTH R, NAVON O. Micrometer-scale cavities in fibrous and cloudy diamonds: a glance into diamond dissolution events [J]. Earth and Planetary Science Letters, 2007, 264(1/2): 89–103. doi: 10.1016/j.jpgl.2007.09.004 [53] VAN DER HILST R D, WIDIYANTORO S, ENGDAHL E R. Evidence for deep mantle circulation from global tomography [J]. Nature, 1997, 386(6625): 578–584. doi: 10.1038/386578a0 [54] STAGNO V, OJWANG D O, MCCAMMON C A, et al. The oxidation state of the mantle and the extraction of carbon from Earth’s interior [J]. Nature, 2013, 493(7430): 84–88. doi: 10.1038/nature11679 [55] HIROSE K, TAKAFUJI N, SATA N, et al. Phase transition and density of subducted MORB crust in the lower mantle [J]. Earth and Planetary Science Letters, 2005, 237(1/2): 239–251. [56] HIROSE K, FEI Y, MA Y, et al. The fate of subducted basaltic crust in the Earth’s lower mantle [J]. Nature, 1999, 397(397): 53–56.