Processing math: 100%

微喷射现象数值模拟研究进展概述

邵建立 何安民 王裴

尹霞, 张建波, 丁阳. 自旋-轨道耦合型莫特绝缘体Sr2IrO4的高压拉曼光谱[J]. 高压物理学报, 2020, 34(4): 040103. doi: 10.11858/gywlxb.20190865
引用本文: 邵建立, 何安民, 王裴. 微喷射现象数值模拟研究进展概述[J]. 高压物理学报, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786
YIN Xia, ZHANG Jianbo, DING Yang. Raman Scattering of Spin-Orbit Mott Insulator Sr2IrO4 at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040103. doi: 10.11858/gywlxb.20190865
Citation: SHAO Jianli, HE Anmin, WANG Pei. Brief Review of Research Progress on Numerical Simulation of Ejection Phenomena[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786

微喷射现象数值模拟研究进展概述

doi: 10.11858/gywlxb.20190786
基金项目: 国家自然科学基金委员会-中国工程物理研究院“NSAF”联合基金(U1530216);科学挑战专题(TZ2016001);北京理工大学青年教师学术启动计划
详细信息
    作者简介:

    邵建立(1979-),男,博士,特别研究员,主要从事材料动态力学响应理论研究. E-mail:shao_jianli@bit.edu.cn

    通讯作者:

    王 裴(1975-),男,博士,研究员,主要从事材料动态力学响应、多介质混合理论研究. E-mail:wangpei@iapcm.ac.cn

  • 中图分类号: O521.2

Brief Review of Research Progress on Numerical Simulation of Ejection Phenomena

  • 摘要: 对微喷射现象的国内外数值模拟研究进行了简要梳理与总结。首先,对微喷射现象特征及其物理内涵进行了解读,然后分别从分子动力学和连续介质力学层次,概述了微射流和微层裂两种主要物质喷射机制的数值模拟研究进展,最后归纳了微喷射现象数值模拟研究仍存在的一些难点问题。希望能为微喷射及相关领域的数值模拟与建模研究提供有益参考。

     

  • 5d过渡金属氧化物体系内的相互作用机制比较复杂,电子相互作用(U)、自旋-轨道耦合(SOC)、晶体场效应等呈现耦合的竞争关系[1]。这种复杂的关系会诱发诸如自旋液体[2-3]、拓扑绝缘体[4-5]、超导体[6-7]等奇异量子态,该领域成为近年来凝聚态物理学研究的热点之一。

    铱酸盐Sr2IrO4是目前研究最多最深的5d过渡金属氧化物之一。一方面,由于其与铜氧超导母体La2CuO4有相似的晶体和电子结构,具备实现超导的可能性,引起了本领域研究人员的极大兴趣;另一方面,Sr2IrO4被视为5d过渡金属氧化物的一个典型代表,这主要归功于Sr2IrO4有一个由强自旋-轨道耦合、晶体场及电子-电子相互作用诱发的著名莫特型绝缘基态[8]。因其具有强自旋-轨道相互作用,导致t2g轨道再次分裂为能量较低的轨道Jeff = 3/2和能量较高的轨道Jeff = 1/2,而Jeff = 1/2的电子特性使其表现为具有赝自旋S = 1/2的绝缘基态[8-11]。研究伊始,大家普遍认为,与3d过渡金属氧化物类似,5d氧化物中的晶格和轨道动力学耦合对其物性的影响也许微不足道。但近年来常压下的一些研究表明,赝自旋-晶格耦合对铱酸盐物理性质可能会产生较大影响[1, 12]。2016年,Gretarsson等[13]在Sr2IrO4的拉曼散射实验中发现,其具有二阶磁振子信号,且低能声子模具有明显的Fano线形,反映出Sr2IrO4中可能具有特殊的赝自旋-晶格相互作用。2018年,Cao等[14]对反铁磁相的Sr2IrO4进行电输运研究,认为强自旋-轨道耦合使倾斜的S = 1/2赝自旋被锁定在八面体IrO6上,赝自旋取向与八面体受到电流影响可能会一同旋转。2019年,Liu等[15]发现在Sr2IrO4中,赝自旋-晶格耦合有可能通过伪姜-泰勒(Jahn-Teller,JT)效应,在磁有序性相变发生的同时,使晶体从四方对称转变为正交对称。由于自旋-晶格耦合现象在外场(尤其是压力)调控下会表现得更为显著,近来已有一些针对Sr2IrO4高压研究的报道。2012年,Haskel等[16]发现在低温11 K、高压17 GPa的条件下,Sr2IrO4的反铁磁序磁性消失,且电阻降低了3个数量级,而其X射线衍射(XRD)结果却未显示发生结构相变。2018年,Samanta等[17]对粉晶样品进行了高压拉曼和XRD研究,发现在17 GPa左右,波数约为180 和260 cm–1处的拉曼峰强度迅速减弱,而波数390 cm–1处拉曼峰出现非对称的Fano峰形,这些现象都显示出电子与声子激发耦合的特征。他们推测:在该压力下存在结构相变,并和Haskel等发现的17 GPa前后的磁性相变有关联。2019年,Chen等[18]利用拉曼和同步辐射技术研究发现,在20 GPa附近,四方对称Sr2IrO4c/a值有明显变化,同时,波数180 cm–1处的拉曼峰显著变宽,暗示出现了微弱的相变。由上述研究可知[16-18],实验仍未证实在17~20 GPa附近有结构相变,这是理解17 GPa发生的磁相变以及是否有强赝自旋-晶格耦合的关键,也是本研究的重点问题。据此,通过原位拉曼光谱详细研究了Sr2IrO4单晶在室温高压下的晶格振动模式。在19.6~22.2 GPa压力区间,199 cm–1处发现一个新峰,为此压力下Sr2IrO4的结构相变找到了直接和确凿的证据。通过进一步阐明此结构相变在Sr2IrO4磁相变中扮演的重要角色,为探索高压下晶格自由度对5d化合物奇异物性的重要影响提供了新思路。

    将高纯度原料SrCO3、IrO2和SrCl2·6H2O粉末以摩尔比4∶1∶2混合置于铂坩埚中,加热坩埚至1 478 K,保持9 h,然后缓慢冷却至室温。静置3 h后,将合成产物分离,并用去离子水洗涤以获得高纯度单晶。单晶的典型尺寸为0.8 mm × 0.8 mm × 0.3 mm。单晶衍射证实合成Sr2IrO4的空间群为I41/acd

    实验使用的加压装置为Mao-Bell型金刚石对顶压砧,所使用的超低荧光金刚石台面直径为300 μm,高压密封垫片材料为T301钢,预压厚度约为30 μm,样品腔孔径约为160 μm。样品尺寸为60 μm × 60 μm × 15 μm,传压介质为高纯度氖气(Ne),以红宝石为压标物质[19]

    通常X射线衍射(XRD)是获得晶体结构的重要技术之一,但高压粉晶在开展衍射实验过程中受到诸多限制,如衍射峰数目有限、衍射峰强度易受较复杂背景的影响,所以对微小的结构变化(如八面体的旋转、倾斜或拉长、缩短)并不敏感。而这些变化可以引起声子振动模式改变,从而被拉曼光谱测得,所以研究这类细微的高压结构相变,拉曼技术较高压粉晶衍射技术更加适合。本实验在北京高压科学研究中心的显微共聚焦拉曼光谱仪上完成。激光器波长为488 nm;谱仪采用1800 gr/mm光栅,激光功率约为2 mW;聚焦在样品上的光斑直径约为5 μm。实验前以硅单晶标样对仪器进行校准。每个拉曼谱采集时间为300 s,最终数据为5个谱的平均结果。

    常温常压下Sr2IrO4具有空间群I41/acd。根据理论分析,该材料有32种不同的拉曼振动模式[20],其组成为ГRaman = 4A1g + 7B1g + 5B2g + 16Eg。由于样品的各向异性和对拉曼激光的响应不同,当前只能探测到部分振动模式,而本次实验所探测到的拉曼振动模式较以往的报道更为丰富[17-18]

    图1为常温常压条件下以不同激光波长、功率、极化方向测得的Sr2IrO4拉曼光谱,通过对比选取最佳测试条件。图1(a)为不同波长测得的拉曼谱,其中拉曼峰位均一致。波长为488和532 nm的激光给出的信号最强,可分辨出较多振动模式的拉曼峰;而488 nm的激光测到的信噪比最高,背底相对平滑。Cetin等[21]在低温3 K下分别采用457、476、488、532、561和632 nm波长的激光进行了类似测量,结果证明488和532 nm的激光信噪比较好。图1(b)为不同功率条件下测得的Sr2IrO4拉曼光谱。由图1(b)可知,在功率调至仪器最高输出功率7.3 mW时,拉曼峰位保持不变,说明样品性质仍然稳定且不存在热激发效应。此外,还对样品Sr2IrO4进行了极化测试,结果见图1(c)图1(d),在0°、90°及180°时拉曼峰强度较高且峰位相同。本实验结果和文献[21]都表明,非极化拉曼能得到更强的信号。通过对不同波长、功率、极化的一系列测试筛选,确定了Sr2IrO4高压拉曼实验的最佳条件。

    图  1  常温常压下不同波长、功率、极化角度的Sr2IrO4拉曼峰
    Figure  1.  Raman peaks of Sr2IrO4 measured at different wavelengths, powers and polarization angles at ambient condition

    图2为常温常压下拉曼振动模式的标定。在488 nm激光3 mW功率的测试中,可观察到在181、263、387、556、675、699、723、1 476 cm–1等处的主要振动模式:(1) 181 cm–1(ν1)处的A1g模式,对应于Sr离子对IrO6八面体的伸缩振动;(2) 263 cm–1ν2)处的A1g模式,对应于Ir—O—Ir键的弯曲振动;(3) 387 cm–1(ν3)和556 cm–1(ν4)处的A1g模式,对应于氧原子的振动;(4) 675 cm–1(ν5)和699 cm–1(ν6)处的B1g模式,对应于顶端氧原子振动;(5) 723 cm–1(ν7)处的B1g模式,对应于顶端氧原子的呼吸振动;(6) 1 476 cm–1(ν8)处的二阶声子振动模式,是723 cm–1(ν7)处声子散射过程引发的二阶拉曼峰。表1列出了实验测得的Sr2IrO4振动峰与已报道的结果对比[20, 22],本次实验测得的拉曼振动模式更加丰富[17-18]

    表  1  常温常压下单晶Sr2IrO4的拉曼峰振动模式指认与文献对比
    Table  1.  Frequencies and assignments about Raman modes of single crystal Sr2IrO4 at ambient condition
    Mode Frequency/cm–1
    AssignmentThis workRef.[20-21]
    A1g (Sr against IrO6)ν1 181 187
    A1g (Ir—O—Ir bending)ν2 263 277
    A1g (Oxygen)ν3 387 392
    A1g (Oxygen)ν4 556 560
    B1g (Oxygen)ν5 675 666
    B1g (Oxygen)ν6 699 690
    B1g (Oxygen, breathing)ν7 723 728
    Two-phonon of 728 cm–1ν81 4761 467
    下载: 导出CSV 
    | 显示表格
    图  2  常温常压下测得的单晶Sr2IrO4的拉曼峰
    Figure  2.  Raman peaks of single crystal Sr2IrO4 at ambient condition

    高压拉曼实验采用488 nm–1波长激光在室温下进行,压力范围为0.8~39.0 GPa。图3图5分别给出了拉曼振动峰位、频移、强峰的半高宽随压力的变化。

    图  3  Sr2IrO4在80~580 cm–1处的拉曼峰及其频移、最强峰半高宽(FWHM)随压力的变化
    Figure  3.  Variation of Raman peak of Sr2IrO4 at 80–580 cm–1 with Raman shift and FWHM under high pressure
    图  4  Sr2IrO4在580~980 cm–1处的拉曼峰及其频移、最强峰半高宽随压力的变化
    Figure  4.  Variation of Raman peak of Sr2IrO4 at 580–980 cm–1 with Raman shift versus and FWHM under high pressure
    图  5  Sr2IrO4在1 476 cm–1处的拉曼峰及其频移随压力的变化
    Figure  5.  Variation of Raman peak of Sr2IrO4 at 1 476 cm–1 with Raman shift versus under high pressure

    图3可知,波数80~580 cm–1之间的拉曼峰随压力上升而宽化,当压力升高至19.6 GPa时,拉曼峰ν1(181 cm–1)突然展宽,且在22.2 GPa时出现一个新峰ν1',其峰位经过高斯拟合确定为199 cm–1。高压下拉曼峰ν2(263 cm–1)的强度减弱。对压力下拉曼峰ν1ν1'ν2ν3的分析表明,随着压力升高,峰位出现蓝移,且半高宽变宽,而ν3的宽化情况最明显。据此,实验结果清晰地证明,在19~22 GPa 压力区间Sr2IrO4确实发生了结构相变。

    迄今为止,首次观察到该结构的相变。Samanta等[17]的研究中,高压下ν1ν2处的拉曼峰强度较弱,在17 GPa前已经消失,所以无法判断是否存在结构相变。最近Chen等[18]所做的拉曼实验,在19.6~21.9 GPa之间同样观察到ν1拉曼模的突然展宽,但未观察到新峰出现。而在本次实验中这些拉曼峰一直存在,并且出现了新峰,这些变化成为确凿的相变判据。

    图4显示了波数在580~980 cm–1区间的ν4ν6ν7拉曼模式,拉曼峰ν5太弱无法观察到。从图4可以看出,所有拉曼峰随压力出现蓝移,且在相变点19.6 GPa前后没有明显突变。但ν6的半高宽在相变点前后出现突变。相变之后,ν6的半高宽急剧上升,且信号强度迅速减弱。此外,ν7的信号强度在相变后也急剧降低。

    图5显示了高波数1 476 cm–1处的二阶声子振动模ν8随压力变化的趋势。声子振动模ν8ν7的二阶声子散射峰,所以其强度变化与ν7呈现一定相关性,同样在相变后急剧减弱。上述现象可以佐证晶体发生了结构相变[17]

    综上所述,对高压拉曼测试结果进行分析发现,在19.6 GPa拉曼谱发生异常变化:拉曼峰ν1附近出现了新峰ν1′,拉曼峰ν6急剧展宽,拉曼峰ν6ν7ν8的信号强度迅速减弱。这些异常变化均表示晶体发生对称性破缺,产生了结构相变。虽然拉曼光谱不能直接提供新相的晶体结构信息,但是根据Samanta等[17]的XRD结果,Sr2IrO4晶体的c/a值随压力上升的速率在相变后突然变缓。据此,Samanta等[17]认为Sr2IrO4可能产生了从I41 /acd空间群到I4/mmm空间群的结构相变。

    由于轨道-自旋耦合的强相互作用,在压力下5d 氧化物的晶格变化会借由轨道传递给自旋,从而改变磁结构[23]。在Sr2IrO4中IrO6呈略微拉长的八面体结构,并围绕c轴发生旋转角为11°的畸变[24-25]。奈尔温度TN在240 K以下时,Sr2IrO4呈反铁磁序,磁矩排布于ab面内,但有微小的倾斜角,使其有0.06 μB/ Ir~0.14 μB/Ir的弱铁磁矩。正是由于自旋-轨道耦合的缘故,Sr2IrO4的磁性对磁矩倾斜角和自旋旋转角非常敏感。即使晶体结构在高压下的转变引起微小的角度变化,也会显著影响其磁结构[8, 26]。实际上Samanta等[17]在密度泛函理论(DFT)计算中,也预测了IrO6八面体旋转角与磁矩倾斜角存在高度耦合,体积压缩时磁有序会变得不稳定。最近,Zhang等[23]在研究Sr3Ir2O7时通过磁振子和声子之间的耦合,证实了IrO6八面体形状拉长和缩短对磁结构的变化有决定性影响。上述理论和实验结果表明:本研究在室温下发现Sr2IrO4结构相变的临界压力19.6 GPa与Haskel等[16]报道的低温下(11 K)磁性相变的压力(17 GPa)非常吻合,说明结构相变独立于磁性相变,但却极有可能是导致 Sr2IrO4发生磁性变化和消失的主要原因。与Sr3Ir2O7不同,Sr2IrO4的磁性变化可能与IrO6八面体的倾斜角关联性更强,进一步的证据还有待对Sr2IrO4磁振子和声子耦合效应做更深入的拉曼研究。另外,在压力下电阻降低了3个数量级,说明结构相变一直影响着电输运特性[16]

    通过对室温下Sr2IrO4的高压拉曼光谱研究,于19.6 GPa在波数约199 cm–1处发现了新的拉曼峰,并伴有其他拉曼峰的异常变化。相变压力与低温下磁结构变化压力吻合,揭示了该结构相变独立发生且会影响磁性相变,说明由于强自旋-轨道耦合,5d化合物的晶体结构变化可以通过耦合的轨道-自旋传递,影响其电磁特性。

    感谢北京高压科学研究中心束海云老师在充气实验中给予的支持。

  • 图  冲击波作用下可能的喷射物形成机制[9]

    Figure  1.  Illustration of possible ejecta formation mechanisms[9]

    图  铅(a、b、c)和钢(d)表面喷射物照片[10]

    Figure  2.  Photographs of the ejection of particles from the free surfaces of lead (a, b, c) and steel (d)[10]

    图  喷射物形成机制随冲击压力的变化

    Figure  3.  Variation of the formation mechanism of ejecta with shock pressure

    图  喷射系数(α)随时间的变化[33]

    Figure  4.  Time evolution of the ejected mass coefficient (α[33]

    图  微射流喷射图像以及喷射系数(R)和头部速度(vh)随粒子速度的变化[35]

    Figure  5.  Microscopic views of microjet formation and variation of the microjetting factor (R) and the head velocity of the microjet (vh) with the particle velocity[35]

    图  不同沟槽角度对应的微射流及其物质来源[38]

    Figure  6.  Microjets and their sources for different half angles[38]

    图  微射流破碎过程模拟图像[3943]

    Figure  7.  Snapshots of microjet breakup process from MD simulations[3943]

    图  微射流喷射系数(R)随冲击压力(PSB)的变化[45]

    Figure  8.  Variation of microjetting factor (R) with shock-breakout pressure(PSB)[45]

    图  喷射系数(R)随衰减速率的变化和强衰减冲击下微射流与微层裂共存图像[47]

    Figure  9.  Microjetting factor (R) and microscopic views of microjet and microspall under strong decaying shock[47]

    图  10  内部和表面微层裂图像及破坏物质对应的初始宽度(wd[50]

    Figure  10.  Views of interior microspalls and surface microspall and the Lagrangian width of the damaged zone (wd)[50]

    图  11  熔化前后损伤状态转变的微观图像[52]

    Figure  11.  Microscopic views of damage before melting and after melting[52]

    图  12  SPH模拟的微射流形成过程[55]

    Figure  12.  SPH simulation of microjet formation process[55]

    图  13  微射流喷射系数(R)和最大喷射速度(ve, m)随加载波前沿上升时间的变化[56]

    Figure  13.  Variations of jetting factor(R)and the maximum jetting velocity (ve, m) with the wave-front rise time[56]

    图  14  微射流头部速度(vh)和喷射系数(R)随沟槽半角(α)的变化[57]

    Figure  14.  Head velocity of microjet (vh) and the jetting factor(R)change with the half angle of groove (α)[57]

    图  15  样品表面缺陷形貌(a)和微喷射累计质量(MLJ)(b)[58]

    Figure  15.  The profile of the surface defect (a) and the cumulative mass (MLJ) of ejection (b)[58]

    图  16  三角波加载下微喷射SPH模拟图像[60]

    Figure  16.  SPH simulation of microjet views driven by decaying shock[60]

    图  17  欧拉模拟得到的喷射状态的不同区域[61]

    Figure  17.  Different regions of jetting state given by Euler simulation[61]

    图  18  微射流CM和MD模拟结果比较[64]

    Figure  18.  Comparison of CM and MD simulation results of microjet[64]

    图  19  SPH模拟与MD模拟及实验结果比较[66]

    Figure  19.  Comparison of SPH simulation, MD simulation and experimental results[66]

    图  20  DNS和MD模拟片状射流的比较[67]

    Figure  20.  Comparison of the ejected sheets obtained with MD and DNS[67]

  • [1] WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics, 1953, 24(3): 349–359. doi: 10.1063/1.1721278
    [2] ASAY J R, MIX L P, PERRY F C. Ejection of material from shocked surfaces [J]. Applied Physics Letters, 1976, 29(5): 284–287. doi: 10.1063/1.89066
    [3] ASAY J R. A model for estimating the effects of surface roughness on mass ejection from shocked materials: SAND78-1256 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1978.
    [4] ASAY J R. Material ejection from shock-loaded free surface of aluminum and lead: SAND76-0542 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1976.
    [5] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144

    ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144
    [6] FUNG J, HARRISON A K, CHITANVIS S, et al. Ejecta source and transport modeling in the FLAG hydrocode [J]. Computers & Fluids, 2013, 83(16): 177–186.
    [7] ANDRIOT P, CHAPRON P, OLIVE F. Ejection of material from shocked surfaces of tin, tantalum and lead-alloys [J]. AIP Conference Proceedings, 1982, 78: 505–509.
    [8] 曾鉴荣, 庄以河. 动载荷下金属板表面的微物质喷射 [J]. 高压物理学报, 1987, 1(1): 88–92. doi: 10.11858/gywlxb.1987.01.012

    ZENG J R, ZHUANG Y H. Mass ejection from free surface of shock-loaded metallic plates [J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 88–92. doi: 10.11858/gywlxb.1987.01.012
    [9] SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals [J]. Journal of Applied Physics, 2002, 92(10): 5830–5836. doi: 10.1063/1.1515125
    [10] OGORODNIKOV V A, MIKHAILOV A L, BURTSEV V V, et al. Detecting the ejection of particles from the free surface of a shock-loaded sample [J]. Journal of Experimental and Theoretical Physics, 2009, 109(3): 530–535. doi: 10.1134/S1063776109090180
    [11] ZELLNER M B, MCNEIL W V, HAMMERBERG J E, et al. Probing the underlying physics of ejecta production from shocked Sn samples [J]. Journal of Applied Physics, 2008, 103(12): 123502. doi: 10.1063/1.2939253
    [12] CHEN Y, HU H, TANG T, et al. Experimental study of ejecta from shock melted lead [J]. Journal of Applied Physics, 2012, 111(5): 053509. doi: 10.1063/1.3692570
    [13] MONFARED S K, ORÓ D M, GROVER M, et al. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection [J]. Journal of Applied Physics, 2014, 116(6): 063504. doi: 10.1063/1.4891449
    [14] 马云, 汪小松, 李欣竹, 等. ASAY膜法测量微物质喷射总质量不确定度的初步实验研究 [J]. 高压物理学报, 2006, 20(2): 207–210. doi: 10.3969/j.issn.1000-5773.2006.02.016

    MA Y, WANG X S, LI X Z, et al. Study of the uncertainty of the ejected Mass measured by ASAY foil method [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 207–210. doi: 10.3969/j.issn.1000-5773.2006.02.016
    [15] VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces [J]. Journal of Applied Physics, 2005, 98(11): 113508. doi: 10.1063/1.2132521
    [16] 文雪峰, 王健, 王晓燕, 等. 微喷射物质作用下脉冲信号电探针的放电机理 [J]. 爆炸与冲击, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06

    WEN X F, WANG J, WANG X Y, et al. Discharging mechanism of pulse signal electric probe conducted by micro-jetting [J]. Explosion and Shock Waves, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06
    [17] 叶雁, 李军, 朱鹏飞, 等. 脉冲X光照相在微物质喷射诊断中的应用 [J]. 高压物理学报, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013

    YE Y, LI J, ZHU P F, et al. Flash X-ray radiography for diagnosing the ejecta from shocked metal surface [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013
    [18] 张林, 李英华, 程晋明, 等. 激光驱动X光背光照相技术在金属靶微层裂研究中的应用探索 [J]. 强激光与粒子束, 2016, 28(4): 23–27.

    ZHANG L, LI Y H, CHENG J M, et al. Exploration of laser-driven X-ray backlighting applied in research of micro-spalls of metal target [J]. High Power Laser and Particle Beams, 2016, 28(4): 23–27.
    [19] SORENSON D S, PAZUCHANICS P, JOHNSON R P, et al. Ejecta particle-size measurements in vacuum and helium gas using ultraviolet in-line Fraunhofer holography: LA-UR-14-24722 [R]. Los Alamos, NM: Lawrence Livermore National Laboratory, 2014.
    [20] 叶雁, 汪伟, 李作友, 等. 用高速摄影和脉冲同轴全息照相联合诊断微射流 [J]. 高压物理学报, 2009, 23(6): 471–475. doi: 10.3969/j.issn.1000-5773.2009.06.012

    YE Y, WANG W, LI Z Y, et al. High-speed photography and pulsed in-line holography diagnostics of microjet [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 471–475. doi: 10.3969/j.issn.1000-5773.2009.06.012
    [21] 汪伟, 李作友, 李欣竹, 等. 用超高速阴影摄影技术研究微喷射现象 [J]. 应用光学, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010

    WANG W, LI Z Y, LI X Z, et al. Study on micro-jet on ultra-high speed shadow photography [J]. Journal of Applied Optics, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010
    [22] BUTTLER W T, ORÓ D M, PRESTON D, et al. The study of high-speed surface dynamics using a pulsed proton beam [J]. AIP Conference Proceedings, 2012, 1426: 999–1002.
    [23] HAMMERBERG J E, BUTTLER W T, LLOBET A, et al. Proton radiography measurements and models of ejecta structure in shocked Sn [J]. AIP Conference Proceedings, 2018, 1979: 080006.
    [24] ZELLNER M B, VUNNI G B. Photon Doppler velocimetry (PDV) characterization of shaped charge jet formation [J]. Procedia Engineering, 2013, 58: 88–97.
    [25] FRANZKOWIAK J E, PRUDHOMME G, MERCIER P, et al. PDV-based estimation of ejecta particles’ mass-velocity function from shock-loaded tin experiment [J]. Review of Scientific Instruments, 2018, 89(3): 033901. doi: 10.1063/1.4997365
    [26] DE RESSÉGUIER T, LOISON D, LESCOUTE E, et al. Dynamic fragmentation of laser shock-melted metals: some experimental advances [J]. Journal of Theoretical and Applied Mechanics, 2010, 48: 957–972.
    [27] 辛建婷, 谷渝秋, 李平, 等. 强激光加载下金属材料微喷回收诊断 [J]. 物理学报, 2012, 61(23): 381–385.

    XIN J T, GU Y Q, LI P, et al. Study on metal ejection under laser shock loading [J]. Acta Physica Sinica, 2012, 61(23): 381–385.
    [28] HE W, XIN J, CHU G, et al. Investigation of fragment sizes in laser-driven shock-loaded tin with improved watershed segmentation method [J]. Optics Express, 2014, 22(16): 18924–18933. doi: 10.1364/OE.22.018924
    [29] BUTTLER W T, WILLIAMS R J R, NAJJAR F M. Foreword to the special issue on ejecta [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 151–155. doi: 10.1007/s40870-017-0120-8
    [30] 王裴, 何安民, 邵建立, 等. 强冲击作用下金属界面物质喷射与混合问题数值模拟和理论研究 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 106–116.

    WANG P, HE A M, SHAO J L, et al. Numerical and theoretical investigations of shock-induced material ejection and ejecta-gas mixing [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 106–116.
    [31] 张景琳, 王继海, 杨淑霞. 材料微喷射和动态损伤的分子动力学研究 [J]. 计算物理, 1993, 10(3): 318–324.

    ZHANG J L, WANG J H, YANG S X. Molecular dynamics research of ejection and damage of metals induced by reflection of shock wave at free surface [J]. Chinese Journal of Computational Physics, 1993, 10(3): 318–324.
    [32] CHEN J, JING F Q, ZHANG J L, et al. Dynamics simulation of ejection of metal under a shock wave [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10833. doi: 10.1088/0953-8984/14/44/386
    [33] CHEN Q F, CAO X L, ZHANG Y, et al. Parallel molecular dynamics simulations of ejection from the metal Cu and Al under shock loading [J]. Chinese Physics Letters, 2005, 22(12): 3151–3154. doi: 10.1088/0256-307X/22/12/047
    [34] HOLIAN B L. Molecular dynamics comes of age for shockwave research [J]. Shock Waves, 2004, 13(6): 489–495.
    [35] SHAO J L, WANG P, HE A M, et al. Atomistic simulations of shock-induced microjet from a grooved aluminium surface [J]. Journal of Applied Physics, 2013, 113(15): 153501. doi: 10.1063/1.4801800
    [36] DE RESSÉGUIER T, LESCOUTE E, SOLLIER A, et al. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks [J]. Journal of Applied Physics, 2014, 115(4): 043525. doi: 10.1063/1.4863719
    [37] 叶建军, 杨健, 郑津洋, 等. 金属材料动态损伤的微观数值模拟 [J]. 江苏大学学报(自然科学版), 2007(1): 41–45.

    YE J J, YANG J, ZHENG J Y, et al. Micro-scale numerical simulation on dynamic damage for metal materials [J]. Journal of Jiangsu University (Natural Science Edition), 2007(1): 41–45.
    [38] LI B, ZHAO F P, WU H A, et al. Microstructure effects on shock-induced surface jetting [J]. Journal of Applied Physics, 2014, 115(7): 073504. doi: 10.1063/1.4865798
    [39] DURAND O, SOULARD L. A new method for large scale molecular dynamics simulations of shock induced ejecta [J]. AIP Conference Proceedings, 2012, 1426: 1247–1250.
    [40] DURAND O, SOULARD L. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions [J]. Journal of Applied Physics, 2013, 114(19): 194902. doi: 10.1063/1.4832758
    [41] HE A M, WANG P, SHAO J L, et al. Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading [J]. Chinese Physics B, 2014, 23(4): 047102. doi: 10.1088/1674-1056/23/4/047102
    [42] HE A M, WANG P, SHAO J L. Molecular dynamics simulations of ejecta size distributions for shock-loaded Cu with a wedged surface groove [J]. Computational Materials Science, 2015, 98: 271–277. doi: 10.1016/j.commatsci.2014.11.020
    [43] HE A M, WANG P, SHAO J L. Statistically heterogeneous size distribution of ejecta from shock-loaded Cu with a wedged surface groove [J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24(2): 025002. doi: 10.1088/0965-0393/24/2/025002
    [44] WU F C, ZHU Y B, LI X Z, et al. Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas [J]. Journal of Applied Physics, 2019, 125(18): 185901. doi: 10.1063/1.5086542
    [45] REN G, CHEN Y, TANG T, et al. Ejecta production from shocked Pb surface via molecular dynamics [J]. Journal of Applied Physics, 2014, 116(13): 133507. doi: 10.1063/1.4896902
    [46] SHAO J L, WANG P, HE A M. Microjetting from a grooved Al surface under supported and unsupported shocks [J]. Journal of Applied Physics, 2014, 116(7): 073501. doi: 10.1063/1.4891733
    [47] SHAO J L, WANG P, HE A M. Influence of shock pressure and profile on the microjetting from a grooved Pb surface [J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(1): 015011. doi: 10.1088/1361-651X/25/1/015011
    [48] WU B, WU F C, ZHU Y B, et al. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks [J]. AIP Advances, 2018, 8(4): 045002. doi: 10.1063/1.5021671
    [49] SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. doi: 10.1140/epjd/e2008-00212-2
    [50] XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
    [51] LIAO Y, XIANG M, ZENG X, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J]. Computational Materials Science, 2014, 95: 89–98. doi: 10.1016/j.commatsci.2014.07.014
    [52] SHAO J L, WANG P, HE A M, et al. Molecular dynamics study on the failure modes of aluminium under decaying shock loading [J]. Journal of Applied Physics, 2013, 113(16): 163507. doi: 10.1063/1.4802671
    [53] SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012
    [54] 王裴, 秦承森, 张树道, 等. SPH方法对金属表面微射流的数值模拟 [J]. 高压物理学报, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010

    WANG P, QIN C S, ZHANG S D, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010
    [55] WANG P, LI T, SHAO J L, et al. Effect of wave-front width on micro-jet from a shocked aluminum surface [J]. Procedia Engineering, 2011, 10: 3327–3332.
    [56] 王裴, 邵建立, 秦承森. 加载波前沿宽度对铝表面微射流的影响 [J]. 物理学报, 2009, 58(12): 1064–1070.

    WANG P, SHAO J L, QIN C S. Effect of loading-wave-front width on micro-jet from aluminum surface [J]. Acta Physica Sinica, 2009, 58(12): 1064–1070.
    [57] 王裴, 邵建立, 秦承森. 沟槽角度对金属表面微射流性质的影响 [J]. 物理学报, 2012, 61(23): 321–327.

    WANG P, SHAO J L, QIN C S. Groove angle effect on micro-jet from shocked metal surface [J]. Acta Physica Sinica, 2012, 61(23): 321–327.
    [58] 赵信文, 李欣竹, 王学军, 等. 金属表面几何缺陷微细结构对微喷射特性的影响 [J]. 物理学报, 2015, 64(12): 285–291.

    ZHAO X W, LI X Z, WANG X J, et al. Effects of surface groove micro-structure on ejection from shocked metal surface [J]. Acta Physica Sinica, 2015, 64(12): 285–291.
    [59] LIU W B, MA D J, HE A M, et al. Ejecta from periodic grooved Sn surface under unsupported shocks [J]. Chinese Physics B, 2018, 27(1): 016202. doi: 10.1088/1674-1056/27/1/016202
    [60] DE RESSÉGUIER T, PRUDHOMME G, ROLAND C, et al. Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves [J]. Journal of Applied Physics, 2018, 124(6): 065106. doi: 10.1063/1.5040304
    [61] KULLBACK B A, TERRONES G, CARRARA M D, et al. Quantification of ejecta from shock loaded metal surfaces [J]. AIP Conference Proceedings, 2012, 1426: 995–998.
    [62] 刘超, 秦承森, 冯其京, 等. 缺陷形状对铝材料微喷射的影响 [J]. 计算物理, 2016, 26(2): 275–280.

    LIU C, QIN C S, FENG Q J, et al. Effect of groove angle on ejecting mass [J]. Chinese Journal of Computational Physics, 2016, 26(2): 275–280.
    [63] 刘超, 王裴, 秦承森, 等. 冲击压力及加载速率对沟槽微射流的影响 [J]. 计算物理, 2010, 27(2): 190–194. doi: 10.3969/j.issn.1001-246X.2010.02.005

    LIU C, WANG P, QIN C S, et al. Effect of pressure and shock wave risetime on material ejection [J]. Chinese Journal of Computational Physics, 2010, 27(2): 190–194. doi: 10.3969/j.issn.1001-246X.2010.02.005
    [64] DIMONTE G, TERRONES G, CHERNE F J, et al. Ejecta source model based on the nonlinear Richtmyer-Meshkov instability [J]. Journal of Applied Physics, 2013, 113(2): 024905. doi: 10.1063/1.4773575
    [65] CHERNE F J, HAMMERBERG J E, ANDREWS M J, et al. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum [J]. Journal of Applied Physics, 2015, 118(18): 185901. doi: 10.1063/1.4934645
    [66] DYACHKOV S A, PARSHIKOV A N, ZHAKHOVSKY V V. Shock-produced ejecta from tin: comparative study by molecular dynamics and smoothed particle hydrodynamics methods [J]. Journal of Physics: Conference Series, 2015, 653(1): 012043.
    [67] DURAND O, JAOUEN S, SOULARD L, et al. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension [J]. Journal of Applied Physics, 2017, 122(13): 135107. doi: 10.1063/1.4994789
    [68] 韩长生. 估算冲击加载下材料自由面微射喷射量的一个半经验解析公式 [J]. 高压物理学报, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009

    HAN C S. A semi-empirical equation for estimating the micro-jet ejection from shocked free-surface [J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009
    [69] GEORGIEVSKAYA A B, RAEVSKY V A. Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect [J]. AIP Conference Proceedings, 2012, 1426: 1007–1010.
    [70] HE A M, LIU J, LIU C, et al. Numerical and theoretical investigation of jet formation in elastic-plastic solids [J]. Journal of Applied Physics, 2018, 124(18): 185902. doi: 10.1063/1.5051527
    [71] GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [72] 石艺娜, 秦承森. 金属射流失稳断裂的理论分析 [J]. 力学学报, 2009, 41(3): 361–369. doi: 10.3321/j.issn:0459-1879.2009.03.010

    SHI Y N, QIN C S. Instability and breakup of stretching metallic jets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 361–369. doi: 10.3321/j.issn:0459-1879.2009.03.010
    [73] DE RESSÉGUIER T, SIGNOR L, DRAGONR A, et al. Experimental investigation of liquid spall in laser shock-loaded tin [J]. Journal of Applied Physics, 2007, 101(1): 013506. doi: 10.1063/1.2400800
    [74] 张凤国, 刘军, 王裴, 等. 三角波强加载下延性金属多次层裂破坏问题 [J]. 爆炸与冲击, 2018, 38(3): 659–664. doi: 10.11883/bzycj-2016-0279

    ZHANG F G, LIU J, WANG P, et al. Multi-spall in ductile metal under triangular impulse loading [J]. Explosion and Shock Waves, 2018, 38(3): 659–664. doi: 10.11883/bzycj-2016-0279
    [75] DIMONTE G, TERRONES G, CHERNE F J, et al. Use of Richtmyer-Meshkov instability to infer yield stress at high energy densities [J]. Physical Review Letters, 2011, 107(26): 264502. doi: 10.1103/PhysRevLett.107.264502
  • 加载中
图(20)
计量
  • 文章访问数:  9105
  • HTML全文浏览量:  2835
  • PDF下载量:  97
出版历程
  • 收稿日期:  2019-05-28
  • 修回日期:  2019-05-30

目录

/

返回文章
返回