用于描述W-Cu粉末混合物冲击压缩行为的 p-αp-λ模型适用性

高明悦 周强

高明悦, 周强. 用于描述W-Cu粉末混合物冲击压缩行为的 p-α与p-λ模型适用性[J]. 高压物理学报, 2020, 34(1): 012101. doi: 10.11858/gywlxb.20190784
引用本文: 高明悦, 周强. 用于描述W-Cu粉末混合物冲击压缩行为的 p-αp-λ模型适用性[J]. 高压物理学报, 2020, 34(1): 012101. doi: 10.11858/gywlxb.20190784
GAO Mingyue, ZHOU Qiang. p-$\alpha $ and p-$\lambda $ Model for Describing Shock Compressive Behavior of W-Cu Powder Mixture[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 012101. doi: 10.11858/gywlxb.20190784
Citation: GAO Mingyue, ZHOU Qiang. p-$\alpha $ and p-$\lambda $ Model for Describing Shock Compressive Behavior of W-Cu Powder Mixture[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 012101. doi: 10.11858/gywlxb.20190784

用于描述W-Cu粉末混合物冲击压缩行为的 p-αp-λ模型适用性

doi: 10.11858/gywlxb.20190784
详细信息
    作者简介:

    高明悦(1993-),女,硕士,主要从事混合粉末冲击压缩行为研究. E-mail: 343702781@qq.com

    通讯作者:

    周 强(1983-),男,博士,特别副研究员,主要从事材料冲击动力学、爆炸加工等方面研究.E-mail: zqpcgm@gmail.com

  • 中图分类号: O347.1; TG301

p-$\alpha $ and p-$\lambda $ Model for Describing Shock Compressive Behavior of W-Cu Powder Mixture

  • 摘要: 研究了3种p-$\alpha $模型和p-$\lambda $模型在预测非均质W-Cu混合粉末冲击压实响应的适用性。利用Mie-Grüneisen方法和Barry等压混合法,基于单质W、Cu粉末的Hugoniot关系预测了同孔隙度的W-Cu混合粉末的Hugoniot线,在高压段与实验结果符合较好,但在低压段与实验偏差较大。分别应用3种p-$\alpha $模型和p-$\lambda $模型对实验结果进行拟合,发现除p-$\alpha $ PL模型外,其他模型均较好地描述W-Cu混合粉末的冲击压缩响应,受经验参数选择的影响,所有模型的压溃强度和压缩路径各不相同,预测功能较差。

     

  • 图  粉末或多孔材料低压区域冲击压缩行为示意图

    Figure  1.  Compressive behavior of powder or porous material

    图  零件拆分及装配图

    Figure  2.  Parts split diagram and assembly diagram

    图  探针位置

    Figure  3.  Probe location

    图  典型的入射波(a)和传播波(b)的DISAR轮廓曲线(显示了结构化波形,以及50%的均衡到达时间和10%、90%的不确定到达时间,用于计算冲击波速度)

    Figure  4.  Typical extracted profile for input (a) and propagated waves (b) that illustrating structured waveforms (Locations of 50% equilibrium time of arrival and 10% and 90% uncertainty arrival times used for calculation of shock velocity are also marked.)

    图  计算原理和误差分布

    Figure  5.  Calculation principle and error distribution

    图  4种模型拟合结果

    Figure  6.  Fitting results of four models

    表  1  实验相关参数计算结果及误差范围

    Table  1.   Calculated results and errors of the related experimental parameters

    No.${\rho _{00}}$/(g·cm–3)vI/ (km·s–1)uS/(km·s–1)uP/(km·s–1)p/GPa$\rho $/(g·cm–3)
    110.696±0.9100.622±0.0031.254±0.0410.457±0.0196.126±0.43416.826±1.122
    210.484±0.7310.270±0.0010.913±0.0550.213±0.0132.038±0.22313.668±0.536
    310.707±1.2290.784±0.0041.549±0.0890.546±0.0289.056±0.91316.639±1.324
    410.237±1.3700.508±0.0031.107±0.0300.388±0.0164.392±0.21115.752±1.370
    下载: 导出CSV

    表  2  组分和混合物的相关冲击和材料特性

    Table  2.   Relevant shock and material properties of constituents and mixtures

    Material${\rho _0}$/(g·cm–3)C0/(km·s–1)S${\gamma _0}$V0/(cm3·g–1)Y/GPa
    W19.35 4.0641.2041.780.052 01.700
    Cu8.933.9101.5101.970.112 10.065
    W-Cu15.1174.0271.2771.830.066 41.030
    下载: 导出CSV

    表  3  模型拟合参数

    Table  3.   Model fitting parameters

    ModelParameters
    pS/GPapE/GPa${ \alpha _{\rm{E} } }$N
    p-${\alpha} $(MQ)4.600.057 71.3591.952
    p-${\alpha} $(PL)pS/GPan
    4.607.80
    p-${\alpha} $(SS)Y/GPa
    1.273 4
    p-$\lambda $n
    1.51
    下载: 导出CSV
  • [1] ALTSHULER L V, KRUPNIKOV K K, LEDENEV B N, et al. Dynamic compressibility and equation of state for iron under high pressure [J]. Soviet Physics-JETP, 1958: 34.
    [2] MCQUEEN R G, MARSH S P, TAYLOR J W, et al. The equation of state of solids from shock wave studies [M]. Los Alamos, New Mexico: University of California, 1970: 293–417.
    [3] FREDENBURG D A. Shock compaction and impact response of thermit powder mixtures [D]. Georgia: Georgia Institute of Technology, 2010.
    [4] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. doi: 10.1063/1.1658021
    [5] DAI C D, EAKINS D E, THADHANI N N. Dynamic densification behavior of nanoiron powders under shock compression [J]. Journal of Applied Physics, 2008, 103(9): 093503. doi: 10.1063/1.2908209
    [6] BUTCHER B M, KARNES C H. Dynamic compaction of porous iron [J]. Journal of Applied Physics, 1969, 40(7): 2967–2976. doi: 10.1063/1.1658109
    [7] CARROLL M M, HOLT A C. Static and dynamic pore‐collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43(4): 1626–1636. doi: 10.1063/1.1661372
    [8] GRADY D, KERLEY E G I, KUHNS L D, et al. Computational modeling and wave propagation in media with inelastic deforming microstructure [J]. Journal de Physique, IV: Proceedings of International Conference, 2000, 10(9): 15–20.
    [9] MEYERS M A. Shock waves: equations of state [M]. John Wiley & Sons, Inc., 2007.
    [10] MCQUEEN R G, MARSH S P. Equation of state for nineteen metallic elements from shock‐wave measurements to two megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. doi: 10.1063/1.1735815
    [11] ALEKSEEV Y F, AL’TSHULER L V, KRUPNIKOVA V P. Shock compression of two-component paraffin-tungsten mixtures [J]. Journal of Applied Mechanics Technical Physics, 1971, 12(4): 624–627.
    [12] BATSANOV S S. Effects of explosions on materials [M]. New York: Springer, 1994.
    [13] MEYERS M A. Dynamic Behavior of Materials [M]. San Diego: University of California, 1994.
    [14] KRUEGER B R, MUTZ A H, VREELAND T. Correlation of shock initiated and thermally initiated chemical reactions in a 1∶1 atomic ratio nickel‐silicon mixture [J]. Journal of Applied Physics, 1991, 70(10): 5362–5368. doi: 10.1063/1.350217
    [15] WENG J, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. doi: 10.1063/1.2335948
    [16] FREDENBURG D A, KOLLER D D, RIGG P A, et al. High-fidelity Hugoniot analysis of porous materials [J]. Review of Scientific Instruments, 2013, 84(1): 013903. doi: 10.1063/1.4774394
    [17] MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. doi: 10.1063/1.329160
    [18] FREDENBURG D A, THADHANI N N. On the applicability of the P- $\alpha $ and P- $\lambda $ models to describe the dynamic compaction response of highly heterogeneous powder mixtures [J]. Journal of Applied Physics, 2013, 113(4): 043507. doi: 10.1063/1.4788700
    [19] BROWN J L, VOGLER T J, GRADY D E, et al. Dynamic compaction of sand [C]//Shock Compression of Condensed Matter-2007, 2007: 1363–1366.
    [20] NEEL C H. Shock compression of a heterogeneous, porous polymer composite [J]. Dissertations & Theses-Gradworks, 2010.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  7712
  • HTML全文浏览量:  2806
  • PDF下载量:  25
出版历程
  • 收稿日期:  2019-05-27
  • 修回日期:  2019-06-11

目录

    /

    返回文章
    返回