Fe-3.24%Si的状态方程和声速的第一性原理计算:地球内核Si元素的约束

李佩芸 黄海军 李艳丽

李佩芸, 黄海军, 李艳丽. Fe-3.24%Si的状态方程和声速的第一性原理计算:地球内核Si元素的约束[J]. 高压物理学报, 2019, 33(6): 060101. doi: 10.11858/gywlxb.20190781
引用本文: 李佩芸, 黄海军, 李艳丽. Fe-3.24%Si的状态方程和声速的第一性原理计算:地球内核Si元素的约束[J]. 高压物理学报, 2019, 33(6): 060101. doi: 10.11858/gywlxb.20190781
LI Peiyun, HUANG Haijun, LI Yanli. First-Principles Calculations of the Equation of State and Sound Velocity of Fe-3.24%Si: Implications for the Composition of Earth’s Inner Core[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060101. doi: 10.11858/gywlxb.20190781
Citation: LI Peiyun, HUANG Haijun, LI Yanli. First-Principles Calculations of the Equation of State and Sound Velocity of Fe-3.24%Si: Implications for the Composition of Earth’s Inner Core[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060101. doi: 10.11858/gywlxb.20190781

Fe-3.24%Si的状态方程和声速的第一性原理计算:地球内核Si元素的约束

doi: 10.11858/gywlxb.20190781
基金项目: 国家自然科学基金(41874103);中央高校基本科研经费(2017IB013,2018IB009,2018B011)
详细信息
    作者简介:

    李佩芸(1994-),女,硕士研究生,主要从事第一性原理计算研究. E-mail:lipeiyun@whut.edu.cn

    通讯作者:

    李艳丽(1977-),女,博士,副教授,主要从事第一性原理研究.E-mail:liyanli128@whut.edu.cn

  • 中图分类号: O521.2

First-Principles Calculations of the Equation of State and Sound Velocity of Fe-3.24%Si: Implications for the Composition of Earth’s Inner Core

  • 摘要: 硅(Si)被认为是地球内核的主要轻元素,但其在内地核中的含量仍然存在争议。为了探索内地核中Si的含量,应用第一性原理方法对Fe-3.24%Si(Si的质量分数为3.24%)进行了研究。构造了4种Fe-3.24%Si的超晶胞,研究了不同的晶胞大小和自旋对优化结构的影响。结果表明:在100 GPa以上,自旋对Fe-3.24%Si的密度无影响;而在100 GPa以下,考虑自旋时的计算结果更接近实验值。基于0 K下的声速、状态方程和相关热力学参数,计算了Fe-3.24%Si在内地核条件下的密度和声速。研究发现:Fe-3.24%Si的密度低于纯铁的密度,略高于内地核的密度;纵波声速及剪切波声速与纯铁的声速很接近,但均明显高于内地核声速,因此排除了内地核含有大量Si元素的可能性。

     

  • 图  hcp-Fe-3.24%Si的结构

    Figure  1.  Structure of hcp-Fe-3.24%Si

    图  单位体积内的能量e随压力的变化

    Figure  2.  Variation of the energy per unit volume e versus pressure

    图  Fe-3.24%Si的压力随密度的变化

    Figure  3.  Calculated density vs. pressure for Fe-3.24%Si

    图  0 K状态下Fe-3.24%Si的声速与密度的关系

    Figure  4.  Sound velocity of Fe-3.24%Si versus density at 0 K

    图  内地核条件下Fe-3.24%Si的密度、纵波声速vp、体波声速vb和横波声速vs与铁和内地核的数据比较

    Figure  5.  Comparison of the density, longitudinal sound velocity vp, bulk sound velocity vb and shear velocity vs of Fe-3.24%Si with those of Fe and the data of the inner core

  • [1] RINGWOOD A E. On the chemical evolution and densities of the planets [J]. Geochimica et Cosmochimica Acta, 1959, 15(4): 257–283. doi: 10.1016/0016-7037(59)90062-6
    [2] BIRCH F. Density and composition of mantle and core [J]. Journal of Geophysical Research, 1964, 69(20): 4377–4388. doi: 10.1029/JZ069i020p04377
    [3] TAKAFUJI N, HIROSE K, MITOME M, et al. Solubilities of O and Si in liquid iron in equilibrium with (Mg, Fe)SiO3 perovskite and the light elements in the core [J]. Geophysical Research Letters, 2005, 32(6).
    [4] FISCHER R A, CAMPBELL A J, REAMAN D M, et al. Phase relations in the Fe-FeSi system at high pressures and temperatures [J]. Earth and Planetary Science Letters, 2013, 373: 54–64. doi: 10.1016/j.jpgl.2013.04.035
    [5] FISCHER R A, CAMPBELL A J, CARACAS R, et al. Equations of state in the Fe-FeSi system at high pressures and temperatures [J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2810–2827. doi: 10.1002/2013JB010898
    [6] TATENO S, KUWAYAMA Y, HIROSE K, et al. The structure of Fe-Si alloy in Earth’s inner core [J]. Earth and Planetary Science Letters, 2015, 418: 11–19. doi: 10.1016/j.jpgl.2015.02.008
    [7] OZAWA H, HIROSE K, YONEMITSU K, et al. High-pressure melting experiments on Fe-Si alloys and implications for silicon as a light element in the core [J]. Earth and Planetary Science Letters, 2016, 456: 47–54. doi: 10.1016/j.jpgl.2016.08.042
    [8] KNITTLE E, JEANLOZ R. Earth’s core-mantle boundary: results of experiments at high pressures and temperatures [J]. Science, 1991, 251(5000): 1438–1443. doi: 10.1126/science.251.5000.1438
    [9] DUBROVINSKY L, DUBROVINSKAIA N, LANGENHORST F, et al. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth’s mantle [J]. Nature, 2003, 422(6927): 58. doi: 10.1038/nature01422
    [10] LIN J F, CAMPBELL A J, HEINZ D L, et al. Static compression of iron-silicon alloys: implications for silicon in the Earth’s core [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1).
    [11] ASANUMA H, OHTANI E, SAKAI T, et al. Static compression of Fe0.83Ni0.09Si0.08 alloy to 374 GPa and Fe0.93Si0.07 alloy to 252 GPa: implications for the Earth’s inner core [J]. Earth and Planetary Science Letters, 2011, 310(1/2): 113–118. doi: 10.1016/j.jpgl.2011.06.034
    [12] BADRO J, FIQUET G, GUYOT F, et al. Effect of light elements on the sound velocities in solid iron: implications for the composition of Earth’s core [J]. Earth and Planetary Science Letters, 2007, 254(1/2): 233–238.
    [13] ANTONANGELI D, SIEBERT J, BADRO J, et al. Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe-Ni-Si alloys [J]. Earth and Planetary Science Letters, 2010, 295(1/2): 292–296.
    [14] MAO Z, LIN J F, LIU J, et al. Sound velocities of Fe and Fe-Si alloy in the Earth’s core [J]. Proceedings of the National Academy of Sciences, 2012, 109(26): 10239–10244. doi: 10.1073/pnas.1207086109
    [15] LIU J, LIN J F, ALATAS A, et al. Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth’s inner core [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 610–623. doi: 10.1002/2015JB012625
    [16] SAKAIRI T, SAKAMAKI T, OHTANI E, et al. Sound velocity measurements of hcp Fe-Si alloy at high pressure and high temperature by inelastic X-ray scattering [J]. American Mineralogist, 2018, 103(1): 85–90. doi: 10.2138/am-2018-6072
    [17] ANTONANGELI D, MORARD G, PAOLASINI L, et al. Sound velocities and density measurements of solid hcp-Fe and hcp-Fe-Si (9 wt.%) alloy at high pressure: constraints on the Si abundance in the Earth’s inner core [J]. Earth and Planetary Science Letters, 2018, 482: 446–453. doi: 10.1016/j.jpgl.2017.11.043
    [18] TSUCHIYA T, FUJIBUCHI M. Effects of Si on the elastic property of Fe at Earth’s inner core pressures: first principles study [J]. Physics of the Earth and Planetary Interiors, 2009, 174(1): 212–219.
    [19] CÔTÉ A S, VOČADLO L, DOBSON D P, et al. Ab initio lattice dynamics calculations on the combined effect of temperature and silicon on the stability of different iron phases in the Earth’s inner core [J]. Physics of the Earth and Planetary Interiors, 2010, 178(1/2): 2–7.
    [20] MARTORELL B, WOOD I G, BRODHOLT J, et al. The elastic properties of hcp-Fe1− xSi x at Earth’s inner-core conditions [J]. Earth and Planetary Science Letters, 2016, 451: 89–96. doi: 10.1016/j.jpgl.2016.07.018
    [21] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864. doi: 10.1103/PhysRev.136.B864
    [22] PERDEW J P. Exchange and correlation in atoms, molecules, and solids: the density functional picture [M]//Electron Correlations and Materials Properties. Boston: Springer, 1999: 287–298.
    [23] GROSS E K U, DREIZLER R M. Density functional theory: an approach to the quantum many-body problem [M]. Berlin: Springer, 1990.
    [24] KOHN W, SHAM L J. Quantum density oscillations in an inhomogeneous electron gas [J]. Physical Review, 1965, 137(6A): A1697. doi: 10.1103/PhysRev.137.A1697
    [25] LANGRETH D C, PERDEW J P. Theory of nonuniform electronic systems. I. analysis of the gradient approximation and a generalization that works [J]. Physical Review B, 1980, 21(12): 5469. doi: 10.1103/PhysRevB.21.5469
    [26] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671. doi: 10.1103/PhysRevB.46.6671
    [27] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717. doi: 10.1088/0953-8984/14/11/301
    [28] VOIGT W. The relation between the two elastic moduli of isotropic materials [J]. Annals of Physics (Leipzig), 1889, 33: 573.
    [29] REUSS A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9: 49–58. doi: 10.1002/zamm.19290090104
    [30] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349. doi: 10.1088/0370-1298/65/5/307
    [31] WANG C S, KLEIN B M, KRAKAUER H. Theory of magnetic and structural ordering in iron [J]. Physical Review Letters, 1985, 54(16): 1852. doi: 10.1103/PhysRevLett.54.1852
    [32] ASADA T, TERAKURA K. Cohesive properties of iron obtained by use of the generalized gradient approximation [J]. Physical Review B, 1992, 46(20): 13599. doi: 10.1103/PhysRevB.46.13599
    [33] COHEN R E, MUKHERJEE S. Non-collinear magnetism in iron at high pressures [J]. Physics of the Earth and Planetary Interiors, 2004, 143: 445–453.
    [34] BROWN J M, FRITZ J N, HIXSON R S. Hugoniot data for iron [J]. Journal of Applied Physics, 2000, 88(9): 5496–5498. doi: 10.1063/1.1319320
    [35] 冯磊. 高压下温度对Fe-8.6Si声速的影响 [D]. 武汉: 武汉理工大学, 2017: 72–83.

    FENG L. Effect of temperature on Fe-8.6Si sound velocity at high pressure [D]. Wuhan: Wuhan University of Technology, 2017: 72–83.
    [36] 经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999: 188–197.

    JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999: 188–197.
    [37] BROWN J M, MCQUEEN R G. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B7): 7485–7494. doi: 10.1029/JB091iB07p07485
    [38] BONESS D A, BROWN J M, MCMAHAN A K. The electronic thermodynamics of iron under Earth core conditions [J]. Physics of the Earth and Planetary Interiors, 1986, 42(4): 227–240. doi: 10.1016/0031-9201(86)90025-7
    [39] FEI Y, MURPHY C, SHIBAZAKI Y, et al. Thermal equation of state of hcp-iron: constraint on the density deficit of Earth’s solid inner core [J]. Geophysical Research Letters, 2016, 43(13): 6837–6843. doi: 10.1002/2016GL069456
    [40] ANDERSON O L. The power balance at the core-mantle boundary [J]. Physics of the Earth and Planetary Interiors, 2002, 131(1): 1–17. doi: 10.1016/S0031-9201(02)00009-2
    [41] BIRCH F. Elasticity and constitution of the Earth’s interior [J]. Journal of Geophysical Research, 1952, 57(2): 227–286. doi: 10.1029/JZ057i002p00227
    [42] HIROSE K, LABROSSE S, HERNLUND J. Composition and state of the core [J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 657–691. doi: 10.1146/annurev-earth-050212-124007
    [43] ZHANG Y, SEKINE T, LIN J F, et al. Shock compression and melting of an Fe-Ni-Si alloy: implications for the temperature profile of the Earth’s core and the heat flux across the core-mantle boundary [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1314–1327. doi: 10.1002/2017JB014723
    [44] ANTONANGELI D, KOMABAYASHI T, OCCELLI F, et al. Simultaneous sound velocity and density measurements of hcp iron up to 93 GPa and 1100 K: an experimental test of the Birch’s law at high temperature [J]. Earth and Planetary Science Letters, 2012, 331: 210–214.
    [45] ANTONANGELI D, OHTANI E. Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models [J]. Progress in Earth and Planetary Science, 2015, 2(1): 3. doi: 10.1186/s40645-015-0034-9
    [46] LIN J F, STURHAHN W, ZHAO J, et al. Sound velocities of hot dense iron: Birch’s law revisited [J]. Science, 2005, 308(5730): 1892–1894. doi: 10.1126/science.1111724
    [47] SAKAMAKI T, OHTANI E, FUKUI H, et al. Constraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions [J]. Science Advances, 2016, 2(2): e1500802. doi: 10.1126/sciadv.1500802
    [48] CHEN B, LAI X, LI J, et al. Experimental constraints on the sound velocities of cementite Fe3C to core pressures [J]. Earth and Planetary Science Letters, 2018, 494: 164–171. doi: 10.1016/j.jpgl.2018.05.002
    [49] GAO L, CHEN B, WANG J, et al. Pressure-induced magnetic transition and sound velocities of Fe3C: implications for carbon in the Earth’s inner core [J]. Geophysical Research Letters, 2008, 35(17).
  • 加载中
图(5)
计量
  • 文章访问数:  10180
  • HTML全文浏览量:  3869
  • PDF下载量:  74
出版历程
  • 收稿日期:  2019-05-22
  • 修回日期:  2019-06-26
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回