Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge
-
摘要: 针对柱状装药的周向预制破片战斗部,结合无量纲分析方法和爆炸驱动理论,确定了影响破片和冲击波相遇位置的关键参数,给出了由缩比战斗部推广预测原型战斗部爆炸产生的破片冲击波作用时序的方法。采用ANSYS/LS-DYNA有限元软件进行数值模拟,对比验证了理论分析和数值试验结果,分析了战斗部缩比比例对冲击波和破片作用时序的影响。结果表明:缩比模型与原型战斗部爆炸产生的破片和冲击波的相遇位置之比和相遇时间之比主要取决于两模型的质量比,在不考虑破片速度衰减时,两模型中载荷相遇位置之比和相遇时间之比等于其质量比的0.33次方。受破片速度衰减影响,该方法仅适用于质量缩比不小于0.2的模型。Abstract: In order to explore the influence of the scale effects on the timing of fragmentation and shock wave, the key parameters affecting the location of fragmentation and shock wave are determined by the dimensionless analysis and explosion theory for the prefabricated fragment warhead. This paper proposes a method to predict the timing relationship of the prototype warhead fragmentation and blast wave by the scale ratio warhead, and establishes the model of the warhead under different scale ratios. The numerical simulation is carried out with ANSYS/LS-DYNA finite element software. Based on the theoretical and numerical results, we analyze the scale effects of the warhead on the timing of shock waves and fragmentation. The results show that the ratio of the encounter position of fragments and shock waves produced by the scaled model and the prototype model depends on the mass ratio of the two models. Without considering the velocity attenuation of fragments, the ratio of the encounter position in two models is equal to the 0.33 power of the mass ratio. Due to the effects of fragmentation velocity attenuation, the method is applicable to models with a mass reduction ratio of not less than 0.2.
-
Key words:
- columnar charge warhead /
- prefabricated fragment warhead /
- scale ratio /
- shock waves /
- fragment /
- action time sequence
-
表 1 破片和冲击波相遇距离问题中相关物理量及其单位和量纲
Table 1. Parameters and their units and dimensions related to the location of the two encounters
Object Parameters Symbol Unit Dimension Fragment Mass mf kg M Explosive Mass me kg M Density ρe kg∙m–3 ML–3 Chemical energy released per unit mass of explosive Ee m2∙s–2 L2T–2 Expansion index γe 1 SI Air Initial pressure pa kg∙m–1∙s–2 ML–1T–2 Initial density ρa kg∙m–3 ML–3 Adiabatic index γa 1 SI 表 2 缩比战斗部尺寸
Table 2. Scaled warhead size
Model r/cm h/cm d/cm me/g mf/g Mass shrinkage
ratioDimension shrinkage
ratio1 1.966 5.023 0.126 100 62.92 0.1 0.464 2 2.476 6.328 0.159 200 125.83 0.2 0.585 3 2.835 7.244 0.181 300 188.75 0.3 0.669 4 3.120 7.972 0.200 400 251.67 0.4 0.737 5 3.931 10.046 0.252 800 503.34 0.8 0.928 6 4.237 10.822 0.271 1 000 629.15 1.0 1.000 表 3 TNT炸药材料参数及JWL状态方程参数
Table 3. Parameters of TNT material and JWL equation of state
ρ/(kg∙m–3) D/(m∙s–1) pCJ/GPa E/(GJ∙m–3) A1/GPa B1/GPa R1 R2 ω V 1 640 6 930 19.4 6.2 309 3.09 4.485 0.79 0.30 1 表 4 空气材料参数及状态方程参数
Table 4. Equation of state parameters of air
ρ/(kg∙m–3) E/MPa C0/MPa C1 C2 C3 C4 C5 C6 1.25 0.25 –0.1 0 0 0 0 0.4 0 表 5 破片材料参数及状态方程参数
Table 5. Equation of state parameters of fragments
ρ/(kg∙m–3) ν σ/MPa ${\dot\varepsilon } $ 7.83 0.3 1 075 0.9 表 6 理论结果与仿真结果对比
Table 6. Comparison of theoretical and simulation results
Model Mass reduction
ratio${\left( {\dfrac{m}{M}} \right)^{0.33}}$ Meeting time Meeting distance Value/µs Reduction Deviation/% Value/cm Reduction Deviation/% 1 0.1 0.464 140 0.403 13.1 27 0.397 14.4 2 0.2 0.585 188 0.531 9.2 36 0.529 9.5 3 0.3 0.669 229 0.642 4.0 45 0.651 2.7 4 0.4 0.737 270 0.763 3.5 52 0.764 3.6 5 0.8 0.929 334 0.941 1.3 64 0.945 1.7 6 1.0 1.000 355 1.000 68 1.000 -
[1] HU W, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM [J]. International Journal of Impact Engineering, 2006, 32(12): 2066–2096. doi: 10.1016/j.ijimpeng.2005.05.004 [2] LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. doi: 10.1016/j.ijimpeng.2005.06.005 [3] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. doi: 10.1016/j.ijimpeng.2009.02.008 [4] LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. doi: 10.1016/j.ijimpeng.2004.04.012 [5] 张成亮, 朱锡, 侯海量, 等. 爆炸冲击波与高速破片对夹层结构的联合毁伤效应试验研究 [J]. 振动与冲击, 2014, 33(15): 184–188.ZHANG C L, ZHU X, HOU H L, et al. Tests for combined damage effect of blast waves and high-velocity fragments on composite sandwich plates [J]. Journal of Vibration and Shock, 2014, 33(15): 184–188. [6] 李茂, 朱锡, 侯海量, 等. 冲击波和高速破片对固支方板的联合作用数值模拟 [J]. 中国舰船研究, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009LI M, ZHU X, HOU H L, et al. Numerical simulation of steel plates subjected to the impact of both impact waves and fragments [J]. Chinese Journal of Ship Research, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009 [7] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性 [J]. 爆炸与冲击, 2015, 35(1): 116–123. doi: 10.11883/1001-1455(2015)01-0116-08HOU H L, ZHANG C L, LI M, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments [J]. Explosion and Shock Waves, 2015, 35(1): 116–123. doi: 10.11883/1001-1455(2015)01-0116-08 [8] LLOYD R. Conventional warhead systems physics and engineering design [M]. Reston: American Institute of Aeronautics and Astronautics, 1998. [9] 梁为民, 张晓忠, 梁仕发, 等. 结构内爆炸破片与冲击波运动规律试验研究 [J]. 兵工学报, 2009(Suppl 2): 223–227.LIANG W M, ZHANG X Z, LIANG S F, et al. Experimental research on motion law of fragment and shock wave under the condition of internal explosion [J]. Acta Armamentarii, 2009(Suppl 2): 223–227. [10] 安振涛, 王超, 甄建伟, 等. 常规弹药爆炸破片和冲击波作用规律理论研究 [J]. 爆破, 2012, 29(1): 15–18. doi: 10.3963/j.issn.1001-487X.2012.01.004AN Z T, WANG C, ZHEN J W, et al. Theoretical research on action law of fragment and shock wave of traditional ammunition explosion [J]. Blasting, 2012, 29(1): 15–18. doi: 10.3963/j.issn.1001-487X.2012.01.004 [11] 郑红伟, 陈长海, 侯海量, 等. 破片尺寸对空爆冲击波及破片传播过程的影响仿真分析 [J]. 中国舰船研究, 2017, 12(6): 73–80. doi: 10.3969/j.issn.1673-3185.2017.06.011ZHENG H W, CHEN C H, HOU H L, et al. Simulation analysis of effects of single fragment size on air-blast wave and fragment propagation [J]. Chinese Journal of Ship Research, 2017, 12(6): 73–80. doi: 10.3969/j.issn.1673-3185.2017.06.011 [12] 史志鑫, 尹建平, 王志军. 预制破片的形状对破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2017(12): 31–35. doi: 10.11809/scbgxb2017.12.008SHI Z X, YIN J P, WANG Z J. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. Journal of Ordnance Equipment Engineering, 2017(12): 31–35. doi: 10.11809/scbgxb2017.12.008 [13] 曾首义, 蒋志刚, 陈斌, 等. 冲击波与破片共同作用探讨 [C]//中国土木工程学会防护工程分会理事会暨学术会议, 2006: 263–267.ZENG S Y, JIANG Z G, CHEN B, et al. Discussion on the interaction between shock wave and fragmentation [C]//China Civil Engineering Society Protection Engineering Branch Council and Academic Conference, 2006: 263–267.