柱状装药预制破片缩比战斗部爆炸冲击波和破片的作用时序

夏冰寒 王金相 周楠 陈兴旺 卢孚嘉

夏冰寒, 王金相, 周楠, 陈兴旺, 卢孚嘉. 柱状装药预制破片缩比战斗部爆炸冲击波和破片的作用时序[J]. 高压物理学报, 2020, 34(1): 015101. doi: 10.11858/gywlxb.20190780
引用本文: 夏冰寒, 王金相, 周楠, 陈兴旺, 卢孚嘉. 柱状装药预制破片缩比战斗部爆炸冲击波和破片的作用时序[J]. 高压物理学报, 2020, 34(1): 015101. doi: 10.11858/gywlxb.20190780
XIA Binghan, WANG Jinxiang, ZHOU Nan, CHEN Xingwang, LU Fujia. Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015101. doi: 10.11858/gywlxb.20190780
Citation: XIA Binghan, WANG Jinxiang, ZHOU Nan, CHEN Xingwang, LU Fujia. Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015101. doi: 10.11858/gywlxb.20190780

柱状装药预制破片缩比战斗部爆炸冲击波和破片的作用时序

doi: 10.11858/gywlxb.20190780
基金项目: 国家自然科学基金(11672138,11602113);江苏省自然科学基金(BK20161055)
详细信息
    作者简介:

    夏冰寒(1995-),男,硕士研究生,主要从事毁伤与防护理论与技术研究.E-mail: 117121011409@njust.edu.cn

    通讯作者:

    王金相(1978-),男,博士,研究员,主要从事爆炸与冲击动力学研究. E-mail: wjx@njust.edu.cn

  • 中图分类号: E932.4; O382.1

Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge

  • 摘要: 针对柱状装药的周向预制破片战斗部,结合无量纲分析方法和爆炸驱动理论,确定了影响破片和冲击波相遇位置的关键参数,给出了由缩比战斗部推广预测原型战斗部爆炸产生的破片冲击波作用时序的方法。采用ANSYS/LS-DYNA有限元软件进行数值模拟,对比验证了理论分析和数值试验结果,分析了战斗部缩比比例对冲击波和破片作用时序的影响。结果表明:缩比模型与原型战斗部爆炸产生的破片和冲击波的相遇位置之比和相遇时间之比主要取决于两模型的质量比,在不考虑破片速度衰减时,两模型中载荷相遇位置之比和相遇时间之比等于其质量比的0.33次方。受破片速度衰减影响,该方法仅适用于质量缩比不小于0.2的模型。

     

  • 图  战斗部模型示意图

    Figure  1.  Schematic diagram of the warhead model

    图  有限元模型

    Figure  2.  Finite element analysis model

    图  模型2中破片和冲击波的传播

    Figure  3.  Fragmentation and shock wave trajectory in Model 2

    图  模型2中破片和冲击波的传播距离与时间的关系

    Figure  4.  Propagation of blast wave and fragments as a function of time in air in Model 2

    表  1  破片和冲击波相遇距离问题中相关物理量及其单位和量纲

    Table  1.   Parameters and their units and dimensions related to the location of the two encounters

    ObjectParametersSymbolUnitDimension
    FragmentMassmfkgM
    ExplosiveMassmekgM
    Densityρekg∙m–3ML–3
    Chemical energy released per unit mass of explosiveEem2∙s–2L2T–2
    Expansion indexγe1SI
    AirInitial pressurepakg∙m–1∙s–2ML–1T–2
    Initial densityρakg∙m–3ML–3
    Adiabatic indexγa1SI
    下载: 导出CSV

    表  2  缩比战斗部尺寸

    Table  2.   Scaled warhead size

    Model r/cm h/cm d/cm me/g mf/gMass shrinkage
    ratio
    Dimension shrinkage
    ratio
    11.966 5.0230.126 100 62.920.10.464
    22.476 6.3280.159 200125.830.20.585
    32.835 7.2440.181 300188.750.30.669
    43.120 7.9720.200 400251.670.40.737
    53.93110.0460.252 800503.340.80.928
    64.23710.8220.2711 000629.151.01.000
    下载: 导出CSV

    表  3  TNT炸药材料参数及JWL状态方程参数

    Table  3.   Parameters of TNT material and JWL equation of state

    ρ/(kg∙m–3)D/(m∙s–1)pCJ/GPaE/(GJ∙m–3)A1/GPaB1/GPaR1R2ωV
    1 6406 93019.46.23093.094.4850.790.301
    下载: 导出CSV

    表  4  空气材料参数及状态方程参数

    Table  4.   Equation of state parameters of air

    ρ/(kg∙m–3)E/MPaC0/MPaC1C2C3C4C5C6
    1.250.25–0.100000.40
    下载: 导出CSV

    表  5  破片材料参数及状态方程参数

    Table  5.   Equation of state parameters of fragments

    ρ/(kg∙m–3)νσ/MPa${\dot\varepsilon } $
    7.830.31 0750.9
    下载: 导出CSV

    表  6  理论结果与仿真结果对比

    Table  6.   Comparison of theoretical and simulation results

    ModelMass reduction
    ratio
    ${\left( {\dfrac{m}{M}} \right)^{0.33}}$Meeting timeMeeting distance
    Value/µsReductionDeviation/%Value/cmReductionDeviation/%
    10.10.4641400.40313.1270.397 14.4
    20.20.5851880.531 9.2360.529 9.5
    30.30.6692290.642 4.0450.651 2.7
    40.40.7372700.763 3.5520.764 3.6
    50.80.9293340.941 1.3640.945 1.7
    61.01.000355 1.000 68 1.000
    下载: 导出CSV
  • [1] HU W, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM [J]. International Journal of Impact Engineering, 2006, 32(12): 2066–2096. doi: 10.1016/j.ijimpeng.2005.05.004
    [2] LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. doi: 10.1016/j.ijimpeng.2005.06.005
    [3] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. doi: 10.1016/j.ijimpeng.2009.02.008
    [4] LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. doi: 10.1016/j.ijimpeng.2004.04.012
    [5] 张成亮, 朱锡, 侯海量, 等. 爆炸冲击波与高速破片对夹层结构的联合毁伤效应试验研究 [J]. 振动与冲击, 2014, 33(15): 184–188.

    ZHANG C L, ZHU X, HOU H L, et al. Tests for combined damage effect of blast waves and high-velocity fragments on composite sandwich plates [J]. Journal of Vibration and Shock, 2014, 33(15): 184–188.
    [6] 李茂, 朱锡, 侯海量, 等. 冲击波和高速破片对固支方板的联合作用数值模拟 [J]. 中国舰船研究, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009

    LI M, ZHU X, HOU H L, et al. Numerical simulation of steel plates subjected to the impact of both impact waves and fragments [J]. Chinese Journal of Ship Research, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009
    [7] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性 [J]. 爆炸与冲击, 2015, 35(1): 116–123. doi: 10.11883/1001-1455(2015)01-0116-08

    HOU H L, ZHANG C L, LI M, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments [J]. Explosion and Shock Waves, 2015, 35(1): 116–123. doi: 10.11883/1001-1455(2015)01-0116-08
    [8] LLOYD R. Conventional warhead systems physics and engineering design [M]. Reston: American Institute of Aeronautics and Astronautics, 1998.
    [9] 梁为民, 张晓忠, 梁仕发, 等. 结构内爆炸破片与冲击波运动规律试验研究 [J]. 兵工学报, 2009(Suppl 2): 223–227.

    LIANG W M, ZHANG X Z, LIANG S F, et al. Experimental research on motion law of fragment and shock wave under the condition of internal explosion [J]. Acta Armamentarii, 2009(Suppl 2): 223–227.
    [10] 安振涛, 王超, 甄建伟, 等. 常规弹药爆炸破片和冲击波作用规律理论研究 [J]. 爆破, 2012, 29(1): 15–18. doi: 10.3963/j.issn.1001-487X.2012.01.004

    AN Z T, WANG C, ZHEN J W, et al. Theoretical research on action law of fragment and shock wave of traditional ammunition explosion [J]. Blasting, 2012, 29(1): 15–18. doi: 10.3963/j.issn.1001-487X.2012.01.004
    [11] 郑红伟, 陈长海, 侯海量, 等. 破片尺寸对空爆冲击波及破片传播过程的影响仿真分析 [J]. 中国舰船研究, 2017, 12(6): 73–80. doi: 10.3969/j.issn.1673-3185.2017.06.011

    ZHENG H W, CHEN C H, HOU H L, et al. Simulation analysis of effects of single fragment size on air-blast wave and fragment propagation [J]. Chinese Journal of Ship Research, 2017, 12(6): 73–80. doi: 10.3969/j.issn.1673-3185.2017.06.011
    [12] 史志鑫, 尹建平, 王志军. 预制破片的形状对破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2017(12): 31–35. doi: 10.11809/scbgxb2017.12.008

    SHI Z X, YIN J P, WANG Z J. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. Journal of Ordnance Equipment Engineering, 2017(12): 31–35. doi: 10.11809/scbgxb2017.12.008
    [13] 曾首义, 蒋志刚, 陈斌, 等. 冲击波与破片共同作用探讨 [C]//中国土木工程学会防护工程分会理事会暨学术会议, 2006: 263–267.

    ZENG S Y, JIANG Z G, CHEN B, et al. Discussion on the interaction between shock wave and fragmentation [C]//China Civil Engineering Society Protection Engineering Branch Council and Academic Conference, 2006: 263–267.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  9722
  • HTML全文浏览量:  3637
  • PDF下载量:  50
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-05-28

目录

    /

    返回文章
    返回