相场断裂方法发展概况

张豪 于继东 裴晓阳 彭辉 李平 蔡灵仓 汤铁钢

张豪, 于继东, 裴晓阳, 彭辉, 李平, 蔡灵仓, 汤铁钢. 相场断裂方法发展概况[J]. 高压物理学报, 2019, 33(3): 030109. doi: 10.11858/gywlxb.20190777
引用本文: 张豪, 于继东, 裴晓阳, 彭辉, 李平, 蔡灵仓, 汤铁钢. 相场断裂方法发展概况[J]. 高压物理学报, 2019, 33(3): 030109. doi: 10.11858/gywlxb.20190777
ZHANG Hao, YU Jidong, PEI Xiaoyang, PENG Hui, LI Ping, CAI Lingcang, TANG Tiegang. An Overview of Phase Field Approach to Fracture[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030109. doi: 10.11858/gywlxb.20190777
Citation: ZHANG Hao, YU Jidong, PEI Xiaoyang, PENG Hui, LI Ping, CAI Lingcang, TANG Tiegang. An Overview of Phase Field Approach to Fracture[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030109. doi: 10.11858/gywlxb.20190777

相场断裂方法发展概况

doi: 10.11858/gywlxb.20190777
基金项目: 国家自然科学基金面上项目(11772067);国家自然科学基金青年科学基金(11702277);国家自然科学基金重点项目(11532012)
详细信息
    作者简介:

    张 豪(1988-),男,博士研究生,助理研究员,主要从事高压物理与力学研究. E-mail:zhanghao17@gscaep.ac.cn

    通讯作者:

    蔡灵仓(1964-),男,博士生导师,研究员,主要从事凝聚态物理研究. E-mail:cai_lingcang@aliyun.com

  • 中图分类号: O347.3

An Overview of Phase Field Approach to Fracture

  • 摘要: 相场断裂方法自21世纪初开始发展以来,一直备受关注,在裂纹扩展模拟方面表现出了一定的特点,取得了一定的研究成果。本文分析了相场断裂方法较其他断裂模拟方法的优势,简单介绍了相场断裂方法的发展现状和发展趋势:目前脆性断裂相场方法已较为成熟,能够模拟诸多脆性断裂中的经典问题,在此基础上正在朝着解决多场耦合情况下的断裂问题发展,且也取得了一定的研究成果。最后,简单介绍了延性断裂相场方法的发展现状,提出在该方向进行深入研究的展望。

     

  • 图  I、III型混合模式下锯齿状裂纹的实验结果(a)和相场模拟结果(b)(c)[21]

    Figure  1.  Experimental result (a) and phase field simulation (b), (c) of jag fracture under mixed condition of type I & III[21]

    图  静态/准静态脆性断裂的相场模拟:(a)I、II型裂纹[27],(b)L形薄板中的裂纹[29]

    Figure  2.  Phase field simulation of static/quasi-static brittle fracture: (a) type I & II fracture[27], (b) fracture in L-shape sheet[29]

    图  动态脆性断裂的相场模拟:(a)(b)动态裂纹经典问题[12],(c)三维形式的KW试验模拟结果[32]

    Figure  3.  Phase field simulation of dynamic brittle fracture: (a), (b) classical problems in dynamic fracture[12]; (c) 3D KW test[32]

    图  相场断裂方法的基本框架

    Figure  4.  Framework of phase field approach to fracture

    图  带裂纹的电场分布[37]

    Figure  5.  Electronic field with fracture[37]

    图  带裂纹场的极化矢量场[38]

    Figure  6.  Polarization field with fracture[38]

    图  水坝(Koyna dam)的水力压裂[41]

    Figure  7.  Phase field simulation of hydraulic fracture in Koyna dam[41]

    图  Ambati等延性断裂相场模拟结果[44]

    Figure  8.  Ductile fracture simulated by Ambati et al.[44]

    图  脆性-延性断裂模型的能量释放率:(a)应变率决定的临界能量释放率转变[36],(b)应力三轴度决定的临界能量释放率转变[46]

    Figure  9.  Energy release rate in fracture mode for brittle-ductile fracture transition: (a) strain rate induced energy release rate transition[36], (b) stress triaxiality induced energy release rate transition[46]

    图  10  KW试验相场模拟结果[36]:(a)冲击速度20 m/s产生的脆性断裂,(b)冲击速度39 m/s产生的绝热剪切失效

    Figure  10.  Phase field simulation to KW test[36]: (a) brittle fracture induced by impact velocity of 20 m/s, (b) ductile fracture induced by impact velocity of 39 m/s

    表  1  裂纹扩展的数值模拟方法对比

    Table  1.   Comparison of methods in fracture propagation simulation

    MethodsType I tensile fractureKW test
    Experimental result
    Element deletion


    Inter element


    XFEM
    Phase field

    下载: 导出CSV

    表  2  扩展有限元及相场方法处理三维及多裂纹的对比

    Table  2.   Comparison of 3D and multi-fracture simulation of XFEM and phase field approach

    CrackXFEMPhase field
    Level setsFast marchingNo need crack tracking
    3D crack
    Multi-crack
    下载: 导出CSV
  • [1] 钱学森. 物理力学讲义[M]. 上海: 上海交通大学出版社, 2007.
    [2] BECKER R. How metals fail [R]. Metal Fracture-Lawrence Livermore Nation Laboratory, 2002: 13–30.
    [3] FAN R, FISH J. The rs-method for material failure simulations [J]. International Journal for Numerical Methods in Engineering, 2008, 73(11): 1607–1623. doi: 10.1002/nme.2134
    [4] HALLQUIST J O. LS-DYNA theoretical manual [M]. USA: Livemore Software Technology Corporation, 1998.
    [5] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397–1434. doi: 10.1016/0022-5096(94)90003-5
    [6] CAMACHO G T, ORTIZ M. Computational modelling of impact damage in brittle materials [J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2899–2938.
    [7] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620. doi: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s
    [8] MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:13.0.CO;2-J
    [9] 庄茁, 成斌斌. 发展基于CB壳单元的扩展有限元模拟三维任意扩展裂纹 [J]. 工程力学, 2012, 29(6): 12–21. doi: 10.6052/j.issn.1000-4750.2010.08.0616

    ZHUANG Z, CHENG B B. Development of X-FEM on CB shell element for simulating 3D arbitrary crack growth [J]. Engineering Mechanics, 2012, 29(6): 12–21. doi: 10.6052/j.issn.1000-4750.2010.08.0616
    [10] PROVATAS N, ELDER K. Book-phase-field methods in materials science and engineering [M]. Wiley-VCH Press, 2010.
    [11] SONG J H, WANG H, BELYTSCHKO T. A comparative study on finite element methods for dynamic fracture [J]. Computational Mechanics, 2008, 42(2): 239–250. doi: 10.1007/s00466-007-0210-x
    [12] BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 217(220): 77–95.
    [13] RAMULU M, KOBAYASHI A S. Mechanics of crack curving and branching-a dynamic fracture analysis [J]. International Journal of Fracture, 1985, 27(3/4): 187–201.
    [14] KALTHOFF J F, WINKLER S. In failure mode transition at high rates of shear loading [C]//Impact Loading and Dynamic Behavioavior of Materials. FRG, 1987: 185–195.
    [15] BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797–826. doi: 10.1016/S0022-5096(99)00028-9
    [16] GIACOMINI A, PONSIGLIONE M. A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications [J]. Archive for Rational Mechanics and Analysis, 2006, 180(3): 399–447. doi: 10.1007/s00205-005-0392-3
    [17] GRAVOUIL A, MOËS N, BELYTSCHKO T. Non-planar 3D crack growth by the extended finite element and level sets-Part II: level set update [J]. International Journal for Numerical Methods in Engineering, 2002, 53(11): 2569–2586. doi: 10.1002/nme.v53:11
    [18] SUKUMAR N, CHOPP D L, BÉCHET E, et al. Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method [J]. International Journal for Numerical Methods in Engineering, 2008, 76(5): 727–748. doi: 10.1002/nme.v76:5
    [19] MIEHE C, SCHÄNZEL L M, ULMER H. Phase field modeling of fracture in multi-physics problems. Part I. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294(1): 449–485.
    [20] HAKIM V, KARMA A. Laws of crack motion and phase-field models of fracture [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(2): 342–368. doi: 10.1016/j.jmps.2008.10.012
    [21] PONS A J, KARMA A. Helical crack-front instability in mixed-mode fracture [J]. Nature, 2010, 464(7285): 85–89. doi: 10.1038/nature08862
    [22] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342. doi: 10.1016/S0022-5096(98)00034-9
    [23] SPATSCHEK R, BRENER E, KARMA A. Phase field modeling of crack propagation [J]. Philosophical Magazine, 2011, 91(1): 75–95. doi: 10.1080/14786431003773015
    [24] GRIFFITH A A. The phenomena of rupture and flow in solid [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1920, 221: 163–198.
    [25] Bourdin B, Francfort G A, Marigo J J. The variational approach to fracture[M]. Springer Science+Business Media B. V., 2008.
    [26] AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209–1229. doi: 10.1016/j.jmps.2009.04.011
    [27] MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations [J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311. doi: 10.1002/nme.v83:10
    [28] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits [J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199: 2765–2778. doi: 10.1016/j.cma.2010.04.011
    [29] MESGARNEJAD A, BOURDIN B, KHONSARI M M. Validation simulations for the variational approach to fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290(1): 420–437.
    [30] BOURDIN B, LARSEN C J, RICHARDSON C L. A time-discrete model for dynamic fracture based on crack regularization [J]. International Journal of Fracture, 2011, 168(2): 133–143. doi: 10.1007/s10704-010-9562-x
    [31] LARSEN C J, ORTNER C, SÜLI E. Existence of solutions to a regularized model of dynamic fracture [J]. Mathematical Models and Methods in Applied Sciences, 2010, 20(7): 1021–1048. doi: 10.1142/S0218202510004520
    [32] HOFACKER M, MIEHE C. Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation [J]. International Journal of Fracture, 2012, 178(1): 113–129.
    [33] HOFACKER M, MIEHE C. A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns [J]. International Journal for Numerical Methods in Engineering, 2013, 93(3): 276–301. doi: 10.1002/nme.v93.3
    [34] SCHLÜTER A, WILLENBÜCHER A, KUHN C, et al. Phase field approximation of dynamic brittle fracture [J]. Computational Mechanics, 2014, 54(5): 1141–1161. doi: 10.1007/s00466-014-1045-x
    [35] MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems. Part III. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304(1): 619–655.
    [36] MIEHE C, HOFACKER M, SCHÄNZEL L M, et al. Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294(1): 486–522.
    [37] WILSON Z A, BORDEN M J, LANDIS C M. A phase-field model for fracture in piezoelectric ceramics [J]. International Journal of Fracture, 2013, 183(2): 135–153. doi: 10.1007/s10704-013-9881-9
    [38] ABDOLLAHI A, ARIAS I. Phase-field modeling of fracture in ferroelectric materials [J]. Archives of Computational Methods in Engineering, 2015, 22(2): 153–181. doi: 10.1007/s11831-014-9118-8
    [39] MIEHE C, SCHÄNZEL L M. Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 93–113.
    [40] ZIAEI-RAD V, SHEN L, JIANG J, et al. Identifying the crack path for the phase field approach to fracture with non-maximum suppression [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 312(1): 304–321.
    [41] SANTILLÁN D, MOSQUERA J C, CUETO-FELGUEROSO L. Phase-field model for brittle fracture. validation with experimental results and extension to dam engineering problems [J]. Engineering Fracture Mechanics, 2017, 178: 109–125. doi: 10.1016/j.engfracmech.2017.04.020
    [42] DUDA F P, CIARBONETTI A, SÁNCHEZ P J, et al. A phase-field/gradient damage model for brittle fracture in elastic-plastic solids [J]. International Journal of Plasticity, 2015, 65: 269–296. doi: 10.1016/j.ijplas.2014.09.005
    [43] AMBATI M, GERASIMOV T, LORENZIS L D. Phase-field modeling of ductile fracture [J]. Computational Mechanics, 2015, 55(5): 1017–1040. doi: 10.1007/s00466-015-1151-4
    [44] AMBATI M, KRUSE R, LORENZIS L D. A phase-field model for ductile fracture at finite strains and its experimental verification [J]. Computational Mechanics, 2016, 57: 149–167. doi: 10.1007/s00466-015-1225-3
    [45] MCAULIFFE C, WAISMAN H. A coupled phase field shear band model for ductile-brittle transition in notched plate impacts [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 173–195. doi: 10.1016/j.cma.2016.02.018
    [46] 柳占立, 李想, 初东阳, 等. 多物理场耦合断裂的相场方法模拟及工程应用[C]//第十二届全国爆炸力学会议. 桐乡, 2018.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  8945
  • HTML全文浏览量:  3645
  • PDF下载量:  186
出版历程
  • 收稿日期:  2019-05-15
  • 修回日期:  2019-05-22
  • 刊出日期:  2019-05-25

目录

    /

    返回文章
    返回