High-Pressure Electrical Conductivity of Single-Crystal Olivine
-
摘要: 以圣卡洛斯(San Carlos)单晶橄榄石为研究对象,结合交流阻抗谱和金刚石对顶砧(DAC)技术,在300 K、0~19 GPa条件下对其电导率的各向异性进行系统研究。压力标定根据红宝石荧光谱线的漂移以及硅油的拉曼光谱。实验结果表明:在300 K、0~19 GPa条件下,橄榄石[100]方向上的电导率最大,从3.8×10–8 S/m增加到9.0×10–8 S/m,[010]与[001]方向上的电导率接近,约为[100]方向电导率的1/2~1/3;橄榄石电导率随着压力线性增加,其中[100]方向的电导率随着压力变化的斜率最大。在室温条件下,橄榄石主要的导电机制是小极化子导电,且具有负的活化体积。研究结果表明,在含水量较低的上地幔区域,随着深度增加,压力效应可能导致电导率横向和纵向的不均一性增强。Abstract: The electrical conductivity of single-crystal San Carlos olivine was measured up to 19 GPa at room temperature in a diamond-anvil cell, coupled with a complex impedance spectroscopy. The pressure was determined by in-situ ruby luminescence and Raman shift of silicone fluid. We found that the electrical conductivity along [100] is largest, increasing approximately from 3.8×10–8 S/m at 0 GPa to 9.0×10–8 S/m at 18 GPa at room temperature. The conductivity along [010] is comparable to that of [001], approximately as 1/2 to 1/3 as that of [100]. Furthermore, the conductivity linearly increases with the pressure, while it changes faster with the pressure along [100] than that of [010] and [001]. At room temperature, the charge transport mechanism of olivine is dominant from the Fe2+–Fe3+ (small polarons) with a negative activation volume. The present results suggest that the pressure effect could lead to larger lateral and vertical heterogeneity in electrical conduction for a dry upper mantle.
-
Key words:
- olivine /
- complex impedance spectroscopy /
- diamond anvil cell /
- electrical conductivity /
- anisotropy
-
图 1 (a)DAC中样品、电极俯视图;(b)[100]方向橄榄石样品显微图像;(c)DAC横截面图;(d)四电极法样品显微图像
Figure 1. (a) Top view of the sample and electrodes in a DAC; (b) Microscopic image of the olivine sample along [100] direction;(c) Cross section view of DAC; (d) Microscopic image of the sample and electrodes using the four-probe method
表 1 样品的EPMA分析结果(质量分数)
Table 1. EPMA analysis results of sample (Mass fraction)
% FeO MgO CaO MnO SiO2 Cr2O3 NiO Total 8.78 50.10 0.07 0.11 40.49 0.03 0.35 99.94 表 2 样品电阻拟合数据
Table 2. Sample resistance fitting data
[100] direction [010] direction [001] direction p/GPa R/GΩ p/GPa R/GΩ p/GPa R/GΩ 0 80.8 0 91.7 0 88.1 2.2 67.2 1.8 79.0 1.6 84.1 3.7 61.8 5.3 71.6 3.7 76.9 6.2 57.0 6.6 61.7 6.3 69.7 8.1 52.0 8.0 58.1 8.5 62.1 10.1 46.2 10.1 57.0 10.6 54.3 12.5 41.1 12.7 51.6 12.5 53.2 14.8 34.7 14.7 50.1 13.7 52.1 18.0 28.0 15.8 44.0 14.9 50.3 19.1 36.0 16.8 49.0 17.8 47.1 -
[1] LARSEN J C. Low frequency (0.1-6.0 CPD) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands [J]. Geophysical Journal International, 1975, 43(1): 17–46. doi: 10.1111/j.1365-246X.1975.tb00626.x [2] FILLOUX J H. Ocean-floor magnetotelluric sounding over North Central Pacific [J]. Nature, 1977, 269(5626): 297–301. doi: 10.1038/269297a0 [3] OLDENBURG D W. Conductivity structure of oceanic upper mantle beneath the Pacific plate [J]. Geophysical Journal International, 1981, 65(2): 359–394. doi: 10.1111/j.1365-246X.1981.tb02717.x [4] SHANKLAND T J, O’CONNELL R J, WAFF H S. Geophysical constraints on partial melt in the upper mantle [J]. Reviews of Geophysics, 1981, 19(3): 394–406. doi: 10.1029/RG019i003p00394 [5] EVANS R L, HIRTH G, BABA K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates [J]. Nature, 2005, 437(7056): 249–252. doi: 10.1038/nature04014 [6] NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary [J]. Nature, 2013, 495(7441): 356–359. doi: 10.1038/nature11939 [7] GAILLARD F, MALKI M, IACONO-MARZIANO G, et al. Carbonatite melts and electrical conductivity in the asthenosphere [J]. Science, 2008, 322(5906): 1363–1365. doi: 10.1126/science.1164446 [8] KARATO S I. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 1990, 347(6290): 272–273. doi: 10.1038/347272a0 [9] WANG D, MOOKHERJEE M, XU Y, et al. The effect of water on the electrical conductivity of olivine [J]. Nature, 2006, 443(7114): 977–980. doi: 10.1038/nature05256 [10] YOSHINO T, MATSUZAKI T, YAMASHITA S, et al. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere [J]. Nature, 2006, 443(7114): 973–976. doi: 10.1038/nature05223 [11] YOSHINO T, MATSUZAKI T, SHATSKIY A, et al. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle [J]. Earth and Planetary Science Letters, 2009, 288(1/2): 291–300. [12] POE B T, ROMANO C, NESTOLA F, et al. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 181(3/4): 103–111. [13] DUBA A G, SHANKLAND T J. Free carbon & electrical conductivity in the Earth’s mantle [J]. Geophysical Research Letters, 1982, 9(11): 1271–1274. doi: 10.1029/GL009i011p01271 [14] LASTOVICKOVÁ M. A review of laboratory measurements of the electrical conductivity of rocks and minerals [J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2): 1–11. [15] DAI L, KARATO S. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine [J]. Earth and Planetary Science Letters, 2014, 408: 79–86. doi: 10.1016/j.jpgl.2014.10.003 [16] DAI L, KARATO S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions [J]. Physics of the Earth and Planetary Interiors, 2014, 232: 51–56. doi: 10.1016/j.pepi.2014.03.010 [17] YANG X. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle [J]. Earth and Planetary Science Letters, 2012, 317: 241–250. [18] XU Y, SHANKLAND T J, DUBA A G. Pressure effect on electrical conductivity of mantle olivine [J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 149–161. [19] YOSHINO T, SHIMOJUKU A, SHAN S, et al. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): 205–220. [20] YOSHINO T, ZHANG B, RHYMER B, et al. Pressure dependence of electrical conductivity in forsterite [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 158–171. doi: 10.1002/2016JB013555 [21] BORUP K A, FISCHER K F, BROWN D R, et al. Measuring anisotropic resistivity of single crystals using the van der Pauw technique [J]. Physical Review B, 2015, 92(4): 045210. doi: 10.1103/PhysRevB.92.045210 [22] SHEN Y, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355 [23] MAO H K, XU J A, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673 [24] 刘锦, 孙樯. 硅油作为压力计的拉曼光谱研究 [J]. 光谱学与光谱分析, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03LIU J, SUN Q. Raman spectroscopic study on silicone fluid as pressure gauge [J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03 [25] 王晓霞, 李志慧, 陈晨, 等. 硅油的高压拉曼散射 [J]. 高等学校化学学报, 2014, 35(11): 2384–2389.WANG X X, LI Z H, LI C, et al. High pressure Raman spectra of silicone oil [J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2384–2389. [26] ROBERTS J J, TYBURCZY J A. Frequency dependent electrical properties of polycrystalline olivine compacts [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16205–16222. doi: 10.1029/91JB01574 [27] SINCLAIR D C, WEST A R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance [J]. Journal of Applied Physics, 1989, 66(8): 3850–3856. doi: 10.1063/1.344049 [28] JOHNSON D. ZView: a software program for IES analysis. Version 2.8 [CP/OL]. Southern Pines, NC: Scribner Associates [2019-03-05]. http://www.scribner.com. [29] ZHA C, DUFFY T S, DOWNS R T, et al. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa [J]. Earth and Planetary Science Letters, 1998, 159(1/2): 25–33. [30] DU FRANE W L, TYBURCZY J A. Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03004. [31] GODDAT A, PEYRONNEAU J, POIRIER J P. Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle [J]. Physics and Chemistry of Minerals, 1999, 27(2): 81–87. doi: 10.1007/s002690050243 [32] KATSURA T, SATO K, ITO E. Electrical conductivity of silicate perovskite at lower-mantle conditions [J]. Nature, 1998, 395(6701): 493–495. doi: 10.1038/26736 [33] LIN J F, WEIR S T, JACKSON D D, et al. Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition [J]. Geophysical Research Letters, 2007, 34(16): L16305. [34] OHTA K, HIROSE K, ONODA S, et al. The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowüstite [J]. Proceedings of the Japan Academy Series B, 2007, 83(3): 97–100. doi: 10.2183/pjab.83.97 [35] YOSHINO T, ITO E, KATSURA T, et al. Effect of iron content on the spin transition pressure of ferropericlase [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B4): B04202. [36] DOBSON D P, RICHMOND N C, BRODHOLT J P. A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1- xO [J]. Science, 1997, 275(5307): 1779–1781. doi: 10.1126/science.275.5307.1779 [37] NEAL S L, MACKIE R L, LARSEN J C, et al. Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8229–8242. doi: 10.1029/1999JB900447 [38] TARITS P, HAUTOT S, PERRIER F. Water in the mantle: results from electrical conductivity beneath the French Alps [J]. Geophysical Research Letters, 2004, 31(6): 265–282. [39] JUNG H, KARATO S. Water-induced fabric transitions in olivine [J]. Science, 2001, 293: 1460–1463. doi: 10.1126/science.1062235