钢筋混凝土墙抗冲击性能的数值模拟分析

宿华祥 易伟建

宿华祥, 易伟建. 钢筋混凝土墙抗冲击性能的数值模拟分析[J]. 高压物理学报, 2020, 34(1): 014201. doi: 10.11858/gywlxb.20190772
引用本文: 宿华祥, 易伟建. 钢筋混凝土墙抗冲击性能的数值模拟分析[J]. 高压物理学报, 2020, 34(1): 014201. doi: 10.11858/gywlxb.20190772
SU Huaxiang, YI Weijian. Numerical Simulation Analysis of Impact Resistance of Reinforced Concrete Wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014201. doi: 10.11858/gywlxb.20190772
Citation: SU Huaxiang, YI Weijian. Numerical Simulation Analysis of Impact Resistance of Reinforced Concrete Wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014201. doi: 10.11858/gywlxb.20190772

钢筋混凝土墙抗冲击性能的数值模拟分析

doi: 10.11858/gywlxb.20190772
基金项目: 国家重点研发计划(2016YFC0701405)
详细信息
    作者简介:

    宿华祥(1992-),男,硕士研究生,主要从事钢筋混凝土结构抗冲击性能研究. E-mail: 15575888135@163.com

    通讯作者:

    易伟建(1954-),男,博士,教授,主要从事混凝土结构基本理论研究. E-mail: wjyi@hnu.edu.cn

  • 中图分类号: O383.2; O389

Numerical Simulation Analysis of Impact Resistance of Reinforced Concrete Wall

  • 摘要: 为了研究钢筋混凝土墙在冲击荷载作用下的动态响应,借助ANSYS/LS-DYNA建立钢筋混凝土墙的有限元模型。冲击体质量为2 t,冲击速度为3 m/s,分析了轴压比、墙宽和边缘构件对钢筋混凝土墙抗冲击性能的影响。在此基础上,分析了墙体在极限荷载作用下经历的3个阶段,提出了一种在极限荷载作用下墙体破坏失效的判别准则;利用所提出的判别准则分析了在极限荷载作用下轴压比、墙宽和边缘构件的影响。结果表明:在一定范围内,随着轴压比的增加,墙体抗冲击性能提高,有轴压的墙体损伤区域较为集中;增加墙宽和加入边缘构件均能有效增强墙体的抗冲击性能;在极限荷载作用下,冲击质量一定时,随着轴压比的增加,结构破坏失效所需的冲击能变小。

     

  • 图  钢筋混凝土墙有限元模型

    Figure  1.  Finite element model of reinforced concrete wall

    图  A-1、A-2梁跨中挠度时程曲线(a)和损伤图(b)比较

    Figure  2.  Comparison of deflection time history curves (a) and damage diagrams (b) of A-1 and A-2 beams in midspan

    图  板位移时程曲线的实验与模拟结果对比

    Figure  3.  Displacement-time curve comparison of the experimental and simulation results

    图  墙A-2中心位移时程曲线(a)与损伤对比图(b)

    Figure  4.  Comparison of time-history curve of central displacement (a) and damage (b) of wall A-2

    图  不同轴压比下墙体中点水平位移比较

    Figure  5.  Midpoint horizontal displacement comparison of the wall with diffirent axial force compression ratios

    图  不同墙宽时墙体中点水平位移比较

    Figure  6.  Midpoint horizontal displacement comparison of the wall with diffirent wall widths

    图  有无边缘构件时墙体中心水平位移比较

    Figure  7.  Midpoint horizontal displacement comparison of the wall with different boundary elements

    图  冲击荷载作用下墙体损伤情况

    Figure  8.  Damage of the wall under impact loading

    图  墙体最大变形

    Figure  9.  Maximum deformation of walls

    图  10  墙体变形折线

    Figure  10.  Deformation diagram of the wall

    图  11  不同冲击能量下墙体位移时程曲线

    Figure  11.  Time-history curve of wall displacement with different impact energy

    图  12  不同轴压比时墙顶竖向位移时程曲线

    Figure  12.  Time-history curve of vertical displacement at the top of wall with different axial compression ratios

    图  13  墙B-1-0.2在81 kJ冲击能量下顶部位移时程曲线

    Figure  13.  Time-history curve of wall B-1-0.2 at the top of wall with 81 kJ impact energy

    表  1  材料参数

    Table  1.   Material parameters

    PartsMaterial modelMaterial parameters
    Hammer*MAT_ELASTIC$\rho = 7\;800\;{\rm{kg/} }{ {\rm{m} }^{\rm{3} } },\;E = 200\;{\rm{GPa,} }\;\nu = 0.27$
    Concrete*MAT_CSCM$\rho = 2\;400\;{\rm{kg/}}{{\rm{m}}^{\rm{3}}},\;{f_{\rm{c}}} = 30\;{\rm{MPa}},\;d = 20\;{\rm{mm}}$
    Distributed reinforcement*MAT_PLASTIC_KINEMATIC$ \rho = 7\;800\;{\rm{kg/} }{ {\rm{m} }^{\rm{3} } },\;E = 200\;{\rm{GPa} },\;\nu = 0.27,$
    $ {f_{\rm{y} } } = 490\;{\rm{MPa} },\;{f_{\rm{u} } } = 656\;{\rm{MPa} },\;{E_{\rm{t} } } = 1.1\;{\rm{GPa} }$
    Stirrups*MAT_PLASTIC_KINEMATIC$ \rho = 7\;800\;{\rm{kg/} }{ {\rm{m} }^{\rm{3} } },\;E = 210\;{\rm{GPa} }, \nu = 0.27,$
    $ {f_{\rm{y}}} = 340\;{\rm{MPa}},\;{f_{\rm{u}}} = 521\;{\rm{MPa}},\;{E_{\rm{t}}} = 1.1\;{\rm{GPa}}$
    下载: 导出CSV

    表  2  梁跨中最大位移比较

    Table  2.   Comparison of the maximum displacement in midspan

    No.Maximum displacement/mmRelative error/%
    MeasuredSimulation
    A-181.082.82.22
    A-274.074.00
    A-383.690.68.37
    A-489.586.6–3.24
    下载: 导出CSV

    表  3  墙板中心最大位移

    Table  3.   Comparison of the maximum displacement at the center of wall

    No.Measured maximum
    displacement /mm
    Maximum displacement
    simulation value /mm
    Relative error/%
    A-132.935.2 6.9
    A-257.452.9–7.8
    下载: 导出CSV

    表  4  钢筋混凝土墙破坏失效时的冲击能量

    Table  4.   The critical impact energy of failure for reinforced concrete wall

    No.Impact energy/kJNo.Impact energy/kJ
    A-0-0.226A-1-0.640
    A-0-0.419B-1-0.281
    A-0-0.619B-1-0.465
    A-1-0.258B-1-0.663
    A-1-0.451
    下载: 导出CSV
  • [1] SOROUSHIAN P, CHOI K B. Steel mechanical properties at different strain rates [J]. Journal of Structural Engineering, 1987, 113(4): 663–672. doi: 10.1061/(ASCE)0733-9445(1987)113:4(663)
    [2] 李杰, 任晓丹. 混凝土静力与动力损伤本构模型研究进展述评 [J]. 力学进展, 2010, 40(3): 284–297. doi: 10.6052/1000-0992-2010-3-J2008-043

    LI J, REN X D. Review of research progress on static and dynamic damage constitutive models of concrete [J]. Progress in Mechanics, 2010, 40(3): 284–297. doi: 10.6052/1000-0992-2010-3-J2008-043
    [3] 许斌, 曾翔. 冲击荷载作用下钢筋混凝土梁性能试验研究 [J]. 土木工程学报, 2014, 47(2): 41–51.

    XU B, ZENG X. Exerimental study on the behavior of reinforced concrete beams under impact loading [J]. China Civil Engineering Journal, 2014, 47(2): 41–51.
    [4] 窦国钦, 杜修力, 李亮. 冲击荷载作用下高强钢筋混凝土梁性能试验 [J]. 天津大学学报, 2014, 47(12): 1072–1080.

    DOU G Q, DU X L, LI L. Experimental study on the behavior of high strength reinforeced concrete beam under impact load [J]. Journal of Tianjin University, 2014, 47(12): 1072–1080.
    [5] TACHIBANA S, MASUYA H, NAKAMURA S. Performance based design of reinforced concrete beams under impact [J]. Natural Hazards & Earth System Sciences, 2010, 10(6): 1069–1078.
    [6] 付应乾, 董新龙. 落锤冲击下钢筋混凝土梁响应及破坏的实验研究 [J]. 中国科学, 2016, 46(4): 400–406.

    FU Y Q, DONG X L. Experimental study on the response and failure of reinforced concrete beams under falling hammer impact [J]. Science in China, 2016, 46(4): 400–406.
    [7] KISHI N, MIKAMI H, MATSUOKA K G, et al. Impact behavior of shear-failure-type RC beams without shear rebar [J]. International Journal of Impact Engineering, 2002, 27(9): 955–968. doi: 10.1016/S0734-743X(01)00149-X
    [8] 窦国钦, 杜修力, 李亮. 冲击荷载作用下钢纤维混凝土配筋梁性能试验 [J]. 天津大学学报, 2015, 48(10): 864–872.

    DOU G Q, DU X L, LI L. Experimental on behavior of reinforced concrete beam with steel fiber under impact load [J]. Journal of Tianjin Universiry: Science and Technology, 2015, 48(10): 864–872.
    [9] 闫秋实, 邵慧芳, 李亮. 冲击荷载作用下装配式钢筋混凝土梁力学性能研究 [J]. 工程力学, 2017, 34(4): 196–205.

    YAN Q S, SHAO H F, LI L. Study on the behavior of precast reinforced concrete beams under impact loading [J]. Engineering Mechanics, 2017, 34(4): 196–205.
    [10] ZINEDDINA M, KRAUTHAMMER T. Dynamic response and behavior of reinforced concrete slabs nder impact loading [J]. International Journal of Impact Engineering, 2007(34): 1517–1534.
    [11] ÖZGÜR ANIL, KANTAR E, YILMAZ M C. Low velocity impact behavior of RC slabs with different support types [J]. Construction & Building Materials, 2015, 93: 1078–1088.
    [12] BHATTI A Q, KISHI N, TAN K H. Impact resistant behaviour of RC slab strengthenedwith FRP sheet [J]. Materials and Structures, 2011(44): 1855–1864.
    [13] 赵春风, 王强, 王静峰, 等. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能 [J]. 高压物理学报, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598

    ZHAO C F, WANG Q, WANG J F, et al. Blast resistance of containment dome reinforced concrete slab in NPP under close-in explosion [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598
    [14] ZHANG X, HAO H, LI C. Experimental investigation of the response of precast segmental columns subjected to impact loading [J]. International Journal of Impact Engineering, 2016, 95: 105–124.
    [15] 刘飞, 罗旗帜, 严波, 等. RC柱破坏模式的数值模拟研究 [J]. 振动与冲击, 2017, 36(16): 122–127.

    LIU F, LUO Q Z, YAN B, et al. Numerical study on the failure of RC column subjected to lateral impact [J]. Journal of Vibration and Shock, 2017, 36(16): 122–127.
    [16] CHENG L, MCCOMB A M. Unreinforced concrete masonry walls strengthened with FRP sheets and strips under pendulum impact [J]. Journal of Composites for Construction, 2010, 14(6): 775–783. doi: 10.1061/(ASCE)CC.1943-5614.0000131
    [17] 郭玉荣, 喻忠操, 郭磊. 砌体墙抗冲击落锤试验方法研究与应用 [J]. 结构工程师, 2012, 28(6): 123–127.

    GUO Y R, YU Z C, GUO L. Impact testing methods for masonry walls based on the drop hammer [J]. Structure Engineers, 2012, 28(6): 123–127.
    [18] WU Y, CRAWFORD J E, MAGALLANES J M. Performence of LS-DYNA concrete constitutive models [C]//12th International LS-DYNA Users Conference, 2012: 3–5.
    [19] 孟一, 易伟建. 混凝土圆柱体试件在低速冲击下动力效应的研究 [J]. 振动与冲击, 2011, 3(3): 205–210. doi: 10.3969/j.issn.1000-3835.2011.03.041

    MENG Y, YI W J. Dynamic behavior of concrete cylinder specimens under low velocity impact [J]. Journal of Vibration and Shock, 2011, 3(3): 205–210. doi: 10.3969/j.issn.1000-3835.2011.03.041
    [20] 赵德博, 易伟建. 钢筋混凝土梁抗冲击性能和设计方法研究 [J]. 振动与冲击, 2015, 34(11): 139–145.

    ZHAO D B, YI W J. Anti-immpact behavior and design method for RC beam [J]. Journal of Vibration and Shock, 2015, 34(11): 139–145.
    [21] 史先达. 钢筋混凝土剪力墙平面外抗冲击性能试验与数值分析 [D]. 长沙: 湖南大学, 2016.

    SHI X D. Experiment and numerical analysis of reinforced concrete shear wall out-of-plane impact resisitance [D]. Changsha: Hunan University, 2016.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  9791
  • HTML全文浏览量:  3787
  • PDF下载量:  70
出版历程
  • 收稿日期:  2019-05-09
  • 修回日期:  2019-05-22
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回