Dynamic Compressive Mechanical and Reactive Properties of Reactive Fragment
-
摘要: 为了研究在冲击作用下烧结和未烧结工艺对活性破片的动态力学性能和反应性能影响,分别使用分离式霍普金森压杆和落锤加载装置对两种工艺的活性破片进行加载,并且对两种实验结果进行了对比。研究结果表明:烧结后的活性破片具有较好的力学性能,并且两种材料都具有明显的应变率效应,动态屈服强度约为静态屈服强度的2.8~3.3倍;落锤加载下烧结后的活性破片更容易发生反应,发生反应的临界落高为1.15 m。研究结果能够反映该材料的力学性能和反应性能。Abstract: The split Hopkinson pressure bars (SHPB) and drop-weight are used to study the effects of sintered and unsintered processes on the dynamic mechanical properties and reaction properties of reactive fragments under impact. The results show that the sintered reactive fragments have better mechanical properties. Both materials have obvious strain-rate effects, and the dynamic yield stress is 2.8–3.3 times of the static yield stress. The sintered reactive fragments are easier to react under the load of drop-weight, and the critical drop height of the reaction is 1.15 m. These results can effectively reflect the mechanical and reactive behavior of reactive fragments.
-
Key words:
- reactive fragment /
- critical reactive height /
- reactive property /
- yield stress
-
表 1 落锤加载试样的实验结果
Table 1. Experiment results of drop-weight load
Test No. Material status Drop height/m v1/(m·s–1) v2/(m·s–1) Reactive state 1 Sintered 0.80 3.84 0.64 No-react 2 1.00 4.25 0.75 No-react 3 1.10 4.48 0.96 No-react 4 1.15 4.80 1.28 React 5 1.20 4.85 0.96 React 6 1.30 5.12 1.28 React 7 Unsintered 0.80 3.80 0.32 No-react 8 1.00 4.16 0.64 No-react 9 1.20 4.82 0.64 No-react 10 1.25 4.95 1.25 React 11 1.30 5.10 1.28 React -
[1] 王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性实验研究 [J]. 北京理工大学学报, 2009, 29(8): 663–666.WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragements [J]. Transactions of Beijing Institute of Technology, 2009, 29(8): 663–666. [2] 黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究 [J]. 含能材料, 2007, 15(6): 566–569. doi: 10.3969/j.issn.1006-9941.2007.06.002HUANG H J, HUANG H, YANG S Q, et al. Preliminary research on damage enhanced fragment [J]. Journal of Energetic Materials, 2007, 15(6): 566–569. doi: 10.3969/j.issn.1006-9941.2007.06.002 [3] 王海福, 郑元枫, 余庆波, 等. 活性破片引爆屏蔽装药机理研究 [J]. 北京理工大学学报, 2012, 32(8): 786–789. doi: 10.3969/j.issn.1001-0645.2012.08.004WANG H F, ZHENG Y F, YU Q B, et al. Study on initiation mechanism of reactive fragment to covered explosive [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 786–789. doi: 10.3969/j.issn.1001-0645.2012.08.004 [4] 帅俊峰, 蒋建伟, 王树有, 等. 复合反应破片对钢靶侵彻的实验研究 [J]. 含能材料, 2009, 17(6): 722–725. doi: 10.3969/j.issn.1006-9941.2009.06.019SHUAI J F, JIANG J W, WANG S Y, et al. Compound reactive fragment penetrating steel target [J]. Journal of Energetic Materials, 2009, 17(6): 722–725. doi: 10.3969/j.issn.1006-9941.2009.06.019 [5] 河源, 何勇, 潘绪超. 含能破片冲击薄板的释能时间 [J]. 火炸药学报, 2010, 33(2): 25–28. doi: 10.3969/j.issn.1007-7812.2010.02.007HE Y, HE Y, PAN X C. Release time of energetic fragments impact thin target [J]. Chinese Journal of Explosives and Propellants, 2010, 33(2): 25–28. doi: 10.3969/j.issn.1007-7812.2010.02.007 [6] 徐松林, 阳世清, 徐文涛, 等. PTFE/AI反应材料的力学性能研究 [J]. 高压物理学报, 2009, 23(5): 384–388. doi: 10.11858/gywlxb.2009.05.010XU S L, YANG S Q, XU W T, et al. Research on the mechanical performance of PTFE/Al reactive materials [J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384–388. doi: 10.11858/gywlxb.2009.05.010 [7] 阳世清, 徐松林, 张彤. PTFE/AI反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42. doi: 10.3969/j.issn.1001-2486.2008.06.009YANG S Q, XU S L, ZHANG T. Preparation and performance of PTEF/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42. doi: 10.3969/j.issn.1001-2486.2008.06.009 [8] RAFTENBERG M N, MOCK W, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. doi: 10.1016/j.ijimpeng.2008.07.041 [9] CAI J, WALLEY S M, HUNT R J A, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites [J]. Materials Science & Engineering A, 2008, 472(1/2): 308–315. [10] 陈鹏, 卢芳云, 覃金贵, 等. 含钨活性材料动态压缩力学性能 [J]. 兵工学报, 2015, 36(10): 1861–1866. doi: 10.3969/j.issn.1000-1093.2015.10.006CHEN P, LU F Y, QIN J G, et al. Dynamic compressive mechanical properties of tungstenic reactive material [J]. Acta Armamentarii, 2015, 36(10): 1861–1866. doi: 10.3969/j.issn.1000-1093.2015.10.006 [11] DANIEL T C. Mechanical response of an Al-PTFE composite to uniaxial compression over a range of strain rates and temperatures [R]. U.S. Army Research Laboratory, 2008: 1–18. [12] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 31–32. [13] 陆明万, 罗学富. 弹性理论基础 [M]. 北京: 清华大学出版社, 1990.