活性破片的动态压缩力学性能和反应性能

陈鹏 屈可朋 全嘉林 陈荣 袁宝慧

陈鹏, 屈可朋, 全嘉林, 陈荣, 袁宝慧. 活性破片的动态压缩力学性能和反应性能[J]. 高压物理学报, 2019, 33(6): 065103. doi: 10.11858/gywlxb.20190769
引用本文: 陈鹏, 屈可朋, 全嘉林, 陈荣, 袁宝慧. 活性破片的动态压缩力学性能和反应性能[J]. 高压物理学报, 2019, 33(6): 065103. doi: 10.11858/gywlxb.20190769
CHEN Peng, QU Kepeng, QUAN Jialin, CHEN Rong, YUAN Baohui. Dynamic Compressive Mechanical and Reactive Properties of Reactive Fragment[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065103. doi: 10.11858/gywlxb.20190769
Citation: CHEN Peng, QU Kepeng, QUAN Jialin, CHEN Rong, YUAN Baohui. Dynamic Compressive Mechanical and Reactive Properties of Reactive Fragment[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065103. doi: 10.11858/gywlxb.20190769

活性破片的动态压缩力学性能和反应性能

doi: 10.11858/gywlxb.20190769
基金项目: 国家自然科学基金(11672328);国家安全重大基础研究项目(05020501)
详细信息
    作者简介:

    陈 鹏(1990-),男,博士研究生,主要从事新型毁伤元与战斗部技术研究. E-mail: cpsust@163.com

    通讯作者:

    袁宝慧(1959-),男,研究员,主要从事先进战斗部技术研究. E-mail: ybhybh59@sina.com

  • 中图分类号: O389; TJ55

Dynamic Compressive Mechanical and Reactive Properties of Reactive Fragment

  • 摘要: 为了研究在冲击作用下烧结和未烧结工艺对活性破片的动态力学性能和反应性能影响,分别使用分离式霍普金森压杆和落锤加载装置对两种工艺的活性破片进行加载,并且对两种实验结果进行了对比。研究结果表明:烧结后的活性破片具有较好的力学性能,并且两种材料都具有明显的应变率效应,动态屈服强度约为静态屈服强度的2.8~3.3倍;落锤加载下烧结后的活性破片更容易发生反应,发生反应的临界落高为1.15 m。研究结果能够反映该材料的力学性能和反应性能。

     

  • 图  烧结与未烧结破片

    Figure  1.  Sintered and unsintered samples

    图  SHPB系统

    Figure  2.  Experiment system of SHPB

    图  落锤加载实验系统

    Figure  3.  Experiment system of drop-weight

    图  准静态加载下烧结与未烧结材料的应力-应变关系

    Figure  4.  Static stress-strain relations of sintered and unsintered samples under quasi-static load

    图  准静态加载后材料的变形情况

    Figure  5.  Deformations of sintered and unsintered specimens under quasi-static load

    图  不同应变率下的应力-应变曲线

    Figure  6.  True stress-strain curves at different strain rates

    图  1.15 m和1.25 m落高下落锤加载试样的高速摄影图像

    Figure  7.  Pictures of the samples loaded by drop-weight from 1.15 m and 1.25 m

    图  烧结和未烧结试样的SEM图像

    Figure  8.  SEM pictures of sintered and unsintered samples

    表  1  落锤加载试样的实验结果

    Table  1.   Experiment results of drop-weight load

    Test No.Material statusDrop height/mv1/(m·s–1)v2/(m·s–1)Reactive state
    1Sintered0.803.840.64No-react
    21.004.250.75No-react
    31.104.480.96No-react
    41.154.801.28React
    51.204.850.96React
    61.305.121.28React
    7Unsintered0.803.800.32No-react
    81.004.160.64No-react
    91.204.820.64No-react
    101.254.951.25React
    111.305.101.28React
    下载: 导出CSV
  • [1] 王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性实验研究 [J]. 北京理工大学学报, 2009, 29(8): 663–666.

    WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragements [J]. Transactions of Beijing Institute of Technology, 2009, 29(8): 663–666.
    [2] 黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究 [J]. 含能材料, 2007, 15(6): 566–569. doi: 10.3969/j.issn.1006-9941.2007.06.002

    HUANG H J, HUANG H, YANG S Q, et al. Preliminary research on damage enhanced fragment [J]. Journal of Energetic Materials, 2007, 15(6): 566–569. doi: 10.3969/j.issn.1006-9941.2007.06.002
    [3] 王海福, 郑元枫, 余庆波, 等. 活性破片引爆屏蔽装药机理研究 [J]. 北京理工大学学报, 2012, 32(8): 786–789. doi: 10.3969/j.issn.1001-0645.2012.08.004

    WANG H F, ZHENG Y F, YU Q B, et al. Study on initiation mechanism of reactive fragment to covered explosive [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 786–789. doi: 10.3969/j.issn.1001-0645.2012.08.004
    [4] 帅俊峰, 蒋建伟, 王树有, 等. 复合反应破片对钢靶侵彻的实验研究 [J]. 含能材料, 2009, 17(6): 722–725. doi: 10.3969/j.issn.1006-9941.2009.06.019

    SHUAI J F, JIANG J W, WANG S Y, et al. Compound reactive fragment penetrating steel target [J]. Journal of Energetic Materials, 2009, 17(6): 722–725. doi: 10.3969/j.issn.1006-9941.2009.06.019
    [5] 河源, 何勇, 潘绪超. 含能破片冲击薄板的释能时间 [J]. 火炸药学报, 2010, 33(2): 25–28. doi: 10.3969/j.issn.1007-7812.2010.02.007

    HE Y, HE Y, PAN X C. Release time of energetic fragments impact thin target [J]. Chinese Journal of Explosives and Propellants, 2010, 33(2): 25–28. doi: 10.3969/j.issn.1007-7812.2010.02.007
    [6] 徐松林, 阳世清, 徐文涛, 等. PTFE/AI反应材料的力学性能研究 [J]. 高压物理学报, 2009, 23(5): 384–388. doi: 10.11858/gywlxb.2009.05.010

    XU S L, YANG S Q, XU W T, et al. Research on the mechanical performance of PTFE/Al reactive materials [J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384–388. doi: 10.11858/gywlxb.2009.05.010
    [7] 阳世清, 徐松林, 张彤. PTFE/AI反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42. doi: 10.3969/j.issn.1001-2486.2008.06.009

    YANG S Q, XU S L, ZHANG T. Preparation and performance of PTEF/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42. doi: 10.3969/j.issn.1001-2486.2008.06.009
    [8] RAFTENBERG M N, MOCK W, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. doi: 10.1016/j.ijimpeng.2008.07.041
    [9] CAI J, WALLEY S M, HUNT R J A, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites [J]. Materials Science & Engineering A, 2008, 472(1/2): 308–315.
    [10] 陈鹏, 卢芳云, 覃金贵, 等. 含钨活性材料动态压缩力学性能 [J]. 兵工学报, 2015, 36(10): 1861–1866. doi: 10.3969/j.issn.1000-1093.2015.10.006

    CHEN P, LU F Y, QIN J G, et al. Dynamic compressive mechanical properties of tungstenic reactive material [J]. Acta Armamentarii, 2015, 36(10): 1861–1866. doi: 10.3969/j.issn.1000-1093.2015.10.006
    [11] DANIEL T C. Mechanical response of an Al-PTFE composite to uniaxial compression over a range of strain rates and temperatures [R]. U.S. Army Research Laboratory, 2008: 1–18.
    [12] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 31–32.
    [13] 陆明万, 罗学富. 弹性理论基础 [M]. 北京: 清华大学出版社, 1990.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  7491
  • HTML全文浏览量:  3331
  • PDF下载量:  36
出版历程
  • 收稿日期:  2019-04-29
  • 修回日期:  2019-05-15
  • 发布日期:  2019-10-25

目录

    /

    返回文章
    返回