多孔材料温压状态方程计算简要评述

陈俊祥 耿华运

陈俊祥, 耿华运. 多孔材料温压状态方程计算简要评述[J]. 高压物理学报, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767
引用本文: 陈俊祥, 耿华运. 多孔材料温压状态方程计算简要评述[J]. 高压物理学报, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767
CHEN Junxiang, GENG Huayun. Review on Evaluation of Temperature-Pressure Equation of State of Porous Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767
Citation: CHEN Junxiang, GENG Huayun. Review on Evaluation of Temperature-Pressure Equation of State of Porous Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767

多孔材料温压状态方程计算简要评述

doi: 10.11858/gywlxb.20190767
基金项目: 国家自然科学基金委员会-中国工程物理研究院“NSAF”联合基金(U1730248);国家自然科学基金(11672274,11274281);中国工程物理研究院科学技术基金(2012A0101001,2015B0101005);冲击波物理与爆轰物理重点实验室基金(6142A03010101,JCKYS2018212012);中国工程物理研究院创新发展基金(CX2019002)
详细信息
    作者简介:

    陈俊祥(1933-),男,研究员,主要从事实验物态方程研究. E-mail: cjx621@163.com

  • 中图分类号: O521.2

Review on Evaluation of Temperature-Pressure Equation of State of Porous Materials

  • 摘要: 多孔材料是一种重要的结构和功能材料,在过滤、催化、屏蔽和冲击防护等重要工程领域具有广泛的应用。多孔材料的物理力学行为极其复杂,虽然经过多年研究,但是仍未完全理解其在极端条件下的响应行为。以冲击加载下多孔材料的压力和温度变化特点为例,对目前常用的几种具有代表性的以密实材料Hugoniot为参照线的多孔材料物态方程模型进行深入分析,并对多种模型的优劣进行比较,在此基础上提出了一种分段处理多孔材料冲击波数据的方法。以多孔Cu为例,展示了该方法的有效性。这种方法将为发展更为精细严格的多孔材料状态方程理论提供有益的参考。

     

  • 图  多孔Cu的Trunin方程计算与实验数据的比较[13]

    Figure  1.  Hugoniot of porous Cu calculated by Trunin’s equation compared to experimental data[13]

    图  W-J方程计算多孔Cu与实验数据比较

    Figure  2.  Compression curve of porous Cu calculated by W-J equation of state compared to experimental data

    图  通过推广的W-J方程计算多孔Cu压强与实验结果比较

    Figure  3.  Compression curve of porous Cu calculated by improved W-J equation of state compared to experimental data

    图  通过推广的W-J方程计算多孔Cu温度与其他计算结果比较

    Figure  4.  Shock temperature of porous Cu calculated by improved W-J equation of state compared to other calculated data

    图  计算压强曲线[18]与Viljoen等结果[13]的比较

    Figure  5.  Compression curve calculated[19]compared to the results of Vilioen et al.[13]

    图  冲击温度和压强的计算结果[18]

    Figure  6.  The calculated shock temperature and pressure[18]

    图  低孔隙度Cu的冲击压强线

    Figure  7.  Compression curve of Cu with ultra-low porosity

    图  低孔隙度Cu的冲击温度线

    Figure  8.  Calculated shock temperature curve of Cu with ultra-low porosity

    图  低孔隙度多孔Cu的D-u曲线

    Figure  9.  The D-u curves of Cu with different ultra-low porosities

    图  10  低孔隙度多孔Cu的p-$\rho $曲线

    Figure  10.  The p-$\rho $ curves of Cu with different ultra-low porosities

    图  11  大孔隙度Cu冲击压缩T-p线

    Figure  11.  The calculated shock T-p curves of Cu with a high porosity

    表  1  不同孔隙度Cu的D-u数据拟合参数

    Table  1.   The parameters for the D-u data of Cu with high porosity

    ${\rho _{00}}$/(g·cm–3)mc0/(km·s–1)$\lambda $$\lambda $'
    7.9001.131.920 462.414 25–0.146 04
    7.3151.221.168 502.684 83–0.199 24
    6.3261.410.421 782.694 98–0.183 45
    5.7421.560.247 992.476 93–0.117 16
    4.5081.980.090 922.105 15–0.080 52
    下载: 导出CSV

    表  2  低孔隙度Cu冲击固相温度与液相温度函数参数

    Table  2.   The parameters for the shock temperature in the solid and liquid phases of Cu with low porosity

    ${{\rho _{00}}}$/(g·cm–3)${T_{\rm H}=a+b p_{\rm H}+c p_{\rm H}^2+d p_{\rm H}^3}$${T_{\rm L}=a+b p_{\rm L}+c p_{\rm L}^2+d p_{\rm L}^3}$
    abcdabcd
    7.900722.153 20–17.753 260.735 67–0.002 685911.275 89–84.108 460.597 35–8.591 44×10–4
    7.315868.336 33–26.095 541.312 99–0.006 913603.769 33–55.517 720.537 68–9.226 82×10–4
    6.3261195.581 88–61.546 114.200 98–0.044 56–1936.853 5854.373 03–0.072 412.025 16×10–4
    5.7421342.781 34–71.452 266.891 94–0.107 30–519.446 3145.078 97–0.040 801.391 05×10–4
    4.508–150.530 7252.113 33–0.158 495.409 68×10–4
    下载: 导出CSV

    表  3  高孔隙度Cu的D-u数据处理参数

    Table  3.   The fitted parameters to the D-u experimental data of porous Cu with different porosities

    ${\rho _{00}}$/(g·cm–3)mc0/(km·s–1)$\lambda $$\lambda'$
    3.57202.50.041.6450.01
    2.976730.0411.456 80.026 5
    2.073 321.182 4210–9
    2.55143.50.0681.344 80.035 1
    2.232540.1121.30.023
    2.966 170.866 160.015 61
    1.63885.450.2251.141 310.038 64
    1.24037.20.346 830.993 520.052 32
    下载: 导出CSV
  • [1] 刘培生. 多孔材料引论[M]. 北京: 清华大学出版社, 2004.
    [2] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1999.
    [3] 赵信峰, 方炎. 金属铜纳米孔洞阵列膜制备方法研究 [J]. 物理学报, 2016, 55(7): 3785–3789.

    ZHAO X F, FANG Y. Metal nano-hole array copied from AAO template [J]. Acta PhysicaSinica, 2016, 55(7): 3785–3789.
    [4] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析 [J]. 物理学报, 2007, 56(8): 4864–4871. doi: 10.3321/j.issn:1000-3290.2007.08.082

    ZHANG H W, LI Y X. Study on bubble nucleation in liquid metal [J]. Acta PhysicaSinica, 2007, 56(8): 4864–4871. doi: 10.3321/j.issn:1000-3290.2007.08.082
    [5] ROSA M E. An introduction to solid foams [J]. Philosophical Magazine Letters, 2008, 88(9-10): 637–645. doi: 10.1080/09500830802302014
    [6] 谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007: 56.
    [7] 经福谦. 实验物态方程导引[M]. 北京: 科学出版社, 1986: 134.
    [8] 李西军, 龚自正, 刘福生. 铁高压熔化线的测量——熔化机理的影响 [J]. 高压物理学报, 2001, 15(3): 221–225. doi: 10.3969/j.issn.1000-5773.2001.03.009

    LI X J, GONG Z Z, LIU F S. A problem in measurements of high pressure melting curve of iron: influenceof melting mechanism on the melting temperature [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 221–225. doi: 10.3969/j.issn.1000-5773.2001.03.009
    [9] LI X J, GONG Z Z, JING F Q, et al. Sound velocities in porous iron shocked to 177 GPa and the implications for shock melting [J]. Chinese Physics Letters, 2001, 18(12): 1632. doi: 10.1088/0256-307X/18/12/327
    [10] WU Q, JING F Q. Thermodynamic equation of state and application to Hugoniot predictions for porous materials [J]. Journal of Applied Physics, 1996, 80(8): 4343. doi: 10.1063/1.363391
    [11] BOSHOFF M L, VILJOEN H J. Comparative study of analytical methods for Hugoniot curves of porous materials [J]. Journal of Applied Physics, 1999, 86(3): 1245. doi: 10.1063/1.370878
    [12] GENG H Y, WU Q, TAN H, et al. Extension of the Wu–Jing equation of state for highly porous materials: Calculations to validate and compare the thermoelectron model [J]. Journal of Applied Physics, 2002, 92(10): 5917–5923. doi: 10.1063/1.1516618
    [13] TRUNIN R F, SIRNAKOV G V, SUTULOV Y N, et al. Compressibility of porous metals in shock waves [J]. Soviet Physics–JETP, 1989, 69(3): 580–588.
    [14] TRUNIN R F, MEDVEDEV A B, FUNTIKOV A I, et al. Shock compression of porous iron, copper, and tungsten, and their equation of state in the terapascal pressure range [J]. Soviet Physics–JETP, 1989, 68(2): 356–361.
    [15] 耿华运, 吴强, 谭华. 热力学物态方程参数的统计力学表示 [J]. 物理学报, 2001, 50(7): 1334. doi: 10.3321/j.issn:1000-3290.2001.07.027
    [16] 耿华运, 谭华, 吴强. 比容可分性及其在自由电子气体模型中的应用 [J]. 高压物理学报, 2001, 15(3): 199–204. doi: 10.3969/j.issn.1000-5773.2001.03.006

    GENG H Y, TAN H, WU Q. Aeparability of specific wolume and its application to free-GAS model of thermoelectrons [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 199–204. doi: 10.3969/j.issn.1000-5773.2001.03.006
    [17] GENG H Y, WU Q, TAN H, et al. Bulk sound velocity of porous materials at high pressures [J]. Chinese Physics, 2002, 11(11): 1188. doi: 10.1088/1009-1963/11/11/317
    [18] 陈俊祥, 于继东, 耿华运, 等. 多孔材料的温度和压强计算 [J]. 物理学报, 2017, 66(5): 056401. doi: 10.7498/aps.66.056401

    CHEN J X, YU J D, GENG H Y, et al. Temperature and pressure calculation of porous materials [J]. Acta Physica Sinica, 2017, 66(5): 056401. doi: 10.7498/aps.66.056401
    [19] CAO X X, CHEN J X, YU Y, et al. An equation of state for abnormal expansion of shocked porous materials [J]. Journal of Applied Physics, 2018, 124(21): 215903. doi: 10.1063/1.5047233
    [20] 陈俊祥. 《实验物态方程导引》附录(内部资料)[Z]. 2019.
    [21] 于渌, 郝柏琳, 陈晓松. 相变和临界现象[M]. 北京: 科学出版社, 2005: 27.
    [22] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 北京: 高等教育出版社, 1999.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  11004
  • HTML全文浏览量:  2513
  • PDF下载量:  61
出版历程
  • 收稿日期:  2019-04-28
  • 修回日期:  2019-05-18

目录

    /

    返回文章
    返回