相干衍射成像的相位复原及重建

康旭 刘进

康旭, 刘进. 相干衍射成像的相位复原及重建[J]. 高压物理学报, 2019, 33(3): 030105. doi: 10.11858/gywlxb.20190761
引用本文: 康旭, 刘进. 相干衍射成像的相位复原及重建[J]. 高压物理学报, 2019, 33(3): 030105. doi: 10.11858/gywlxb.20190761
KANG Xu, LIU Jin. Phase Retrieval and Reconstruction of Coherent Diffraction Imaging[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030105. doi: 10.11858/gywlxb.20190761
Citation: KANG Xu, LIU Jin. Phase Retrieval and Reconstruction of Coherent Diffraction Imaging[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030105. doi: 10.11858/gywlxb.20190761

相干衍射成像的相位复原及重建

doi: 10.11858/gywlxb.20190761
详细信息
    作者简介:

    康 旭(1989-),男,博士,助理研究员,主要从事X射线成像研究. E-mail:kxu@mail.ustc.edu.cn

    通讯作者:

    刘 进(1978-),男,博士,副研究员,主要从事X射线成像研究. E-mail:ljin_ifp@caep.cn

  • 中图分类号: O434.1

Phase Retrieval and Reconstruction of Coherent Diffraction Imaging

  • 摘要: 相干衍射成像是一种对材料体密度敏感的超高分辨成像技术。相较于传统表面敏感的超高分辨成像技术,相干衍射成像利用了硬X射线的强穿透能力,可以深入材料体内部进行成像,且成像分辨能力可以根据成像布局进行调整,最高达到原子级空间分辨能力。这种灵活的空间分辨调整依赖于相干衍射成像独特的相位复原技术,即通过对图像成像强度的过采样,利用含约束的迭代算法同时获得光场的强度及相位,进而对样品进行重建;同时结合图像定向及组合技术,相干衍射成像可以实现对样品的三维重建。本文主要从成像原理、复原算法和重建方法介绍相干衍射成像技术,并结合实验进展及模拟研究展示该技术在多种重建情形下具备的诊断能力,以期较为全面地给出相干衍射成像技术的发展趋势。

     

  • 图  散射过程的几何布局

    Figure  1.  Geometric setup of scattering process

    图  相位复原流程图

    Figure  2.  Flowsheet of phase retrieval

    图  Miao等[15]实验样品(a)及重建结果(b)

    Figure  3.  The experimental sample (a) and its reconstruction result (b) in the work of Miao et al.[15]

    图  染色体的三维CDI实验

    Figure  4.  Three-dimensional CDI experiment of chromosome

    图  病毒的XFEL成像实验

    Figure  5.  The images of a virus by XFEL source

    图  GaN量子点CDI实验

    Figure  6.  CDI experiment of GaN quantum dot

    图  银立方体的CDI成像

    Figure  7.  CDI experiment of silver cube

    图  模拟的超高分辨二维CDI实验

    Figure  8.  Simulation of 2-dimensional CDI experiment with ultra-high resolution

    图  扫描型CDI重建结果[22]

    Figure  9.  The reconstruction result of scanning-CDI[22]

    图  10  布拉格型CDI实验重建的样品相位

    Figure  10.  The reconstructed phase in Bragg-CDI experiment

  • [1] CHAO W, HARTENECK B D, LIDDLE J A, et al. Soft X-ray microscopy at a spatial resolution better than 15 nm [J]. Nature, 2005, 435(7046): 1210. doi: 10.1038/nature03719
    [2] BARBER J L, BARNES C W, SANDBERG R L, et al. Diffractive imaging at large fresnel number: challenge of dynamic mesoscale imaging with hard X-rays [J]. Physical Review B, 2014, 89(18): 184105. doi: 10.1103/PhysRevB.89.184105
    [3] XIAO X H, SHEN Q. Wave propagation and phase retrieval in fresnel diffraction by a distorted-object approach [J]. Physical Review B, 2005, 72(3): 033103. doi: 10.1103/PhysRevB.72.033103
    [4] MIAO J W, AMONETTE J E, NISHINO Y, et al. Direct determination of the absolute electron density of nanostructured and disordered materials at sub-10-nm resolution [J]. Physical Review B, 200, 68(1): 012201.
    [5] SAYER D. Some implications of a theorem due to shannon [J]. Acta Crystallographica, 1952, 5: 843.
    [6] GERCHBERG R W, SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1972, 35: 237.
    [7] FIENUP J R. Phase retrieval algorithm: a comparison [J]. Applied Optics, 1982, 21: 2758. doi: 10.1364/AO.21.002758
    [8] ELSER V. Phase retrieval by iterated projections [J]. Journal of the Optical Society of America, 2003, 20(1): 40. doi: 10.1364/JOSAA.20.000040
    [9] CHEN C C, MIAO J, WANG C W, et al. Application of optimization technique to noncrystalline X-ray diffraction microscopy: guided hybrid input-output method [J]. Physical Review B, 2007, 76(6): 064113. doi: 10.1103/PhysRevB.76.064113
    [10] LUKE D R. Relaxed averaged alternating reflections for diffraction imaging [J]. Inverse Problems, 2005, 21: 37. doi: 10.1088/0266-5611/21/1/004
    [11] MARCHESINI S, HE H, CHAPMAN H N, et al. X-ray image reconstruction from a diffraction pattern alone [J]. Physical Review B, 2003, 68: 140101. doi: 10.1103/PhysRevB.68.140101
    [12] MIAO J, SYAER D, CHAPMAN H N. Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects [J]. Josa A, 1998, 15: 1662. doi: 10.1364/JOSAA.15.001662
    [13] 周光照, 佟亚军, 陈灿, 等. 相干X射线衍射成像的数字模拟研究 [J]. 物理学报, 2011, 60(2): 028701.

    ZHOU G Z, TONG Y J, CHEN C, et al. Digital simulation for coherent X-ray diffractive imaging [J]. Acta Physica Sinica, 2011, 60(2): 028701.
    [14] VARTANYANTS I A, ROBINSON I K. Partial coherence effects on the imaging of small crystals using coherent X-ray diffraction [J]. Journal of Physics: Condensed Matter, 2001, 13(47): 10593. doi: 10.1088/0953-8984/13/47/305
    [15] MIAO J W, CHARALAMBOUS P, KIRZ J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens [J]. Nature, 1999, 400: 342. doi: 10.1038/22498
    [16] MIAO J W, NISHINO Y, KOHNURA Y, et al. Quantitative image reconstruction of GaN quantum dots from oversampled diffraction intensities alone [J]. Physical Review Letters, 2005, 95(8): 085503. doi: 10.1103/PhysRevLett.95.085503
    [17] NISHINO Y, TAKAHASHI Y, IMAMOTO N, et al. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction [J]. Physical Review Letters, 2009, 102(1): 018101. doi: 10.1103/PhysRevLett.102.018101
    [18] EKEBERG T, SVENDA M, ABERGEL C, et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser [J]. Physical Review Letters, 2015, 114(9): 098102. doi: 10.1103/PhysRevLett.114.098102
    [19] DUANE N T, ELSER V. Reconstruction algorithm for single-particle diffraction imaging experiments [J]. Physical Review E, 2009, 80(2): 026705. doi: 10.1103/PhysRevE.80.026705
    [20] MIAO J W, CHEN C C, SONG C, et al. Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy [J]. Physical Review Letters, 2006, 97(21): 215503. doi: 10.1103/PhysRevLett.97.215503
    [21] TAKAHASHI Y, NISHINO Y, TSUTSUMI R, et al. High-resolution projection image reconstruction of thick objects by hard X-ray diffraction microscopy [J]. Physical Review B, 2010, 82(21): 214102. doi: 10.1103/PhysRevB.82.214102
    [22] THIBAULT P, DIEROLF M, MENZEL A, et al. High-resolution scanning X-ray diffraction microscopy [J]. Science, 2008, 321(5887): 379. doi: 10.1126/science.1158573
    [23] RODENBURG J M, HURST A C, CULLIS A G, et al. Hard-X-ray lensless imaging of extended objects [J]. Physical Review Letters, 2007, 98(3): 034801. doi: 10.1103/PhysRevLett.98.034801
    [24] KLAUS G, PIERRE T, SEBASTIAN K, et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 529. doi: 10.1073/pnas.0905846107
    [25] DIEROLF M, MENZEL A, THIBAULT P, et al. Ptychographic X-ray computed tomography at the nanoscale [J]. Nature, 2010, 467(7314): 436. doi: 10.1038/nature09419
    [26] ROBINSON I K, VARTANYANTS I A, WILLIAMS G J, et al. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction [J]. Physical Review Letters, 2001, 87(19): 195505. doi: 10.1103/PhysRevLett.87.195505
    [27] WILLIAMS G J, PFEIFER M A, VARTANYANTS I A, et al. Three-dimensional imaging of microstructure in Au nanocrystals [J]. Physical Review Letters, 2003, 90(17): 175501. doi: 10.1103/PhysRevLett.90.175501
    [28] PFEIFER M A, WILLIAMS G J, VARTANYANTS I A, et al. Three-dimensional mapping of a deformation field inside a nanocrystal [J]. Nature, 2006, 442(7098): 63. doi: 10.1038/nature04867
    [29] NEWTON M C, LEAKE S J, HARDER R, et al. Three-dimensional imaging of strain in a single ZnO nanorod [J]. Nature Materials, 2010, 9(2): 279.
    [30] HARDER R, ROBINSON I. Coherent X-ray diffraction imaging of strain at the nanoscale [J]. Nature Materials, 2009, 8(4): 291. doi: 10.1038/nmat2400
    [31] GANG X, OUSSAMA M, MANFRED R, et al. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures [J]. Advanced Materials, 2014, 26(46): 7747. doi: 10.1002/adma.v26.46
  • 加载中
图(10)
计量
  • 文章访问数:  9501
  • HTML全文浏览量:  3069
  • PDF下载量:  42
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-05-14

目录

    /

    返回文章
    返回