面内冲击荷载下半凹角蜂窝的抗冲击特性

陈鹏 侯秀慧 张凯

陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性[J]. 高压物理学报, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759
引用本文: 陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性[J]. 高压物理学报, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759
CHEN Peng, HOU Xiuhui, ZHANG Kai. Impact Resistance of Semi Re-Entrant Honeycombs under in-Plane Dynamic Crushing[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759
Citation: CHEN Peng, HOU Xiuhui, ZHANG Kai. Impact Resistance of Semi Re-Entrant Honeycombs under in-Plane Dynamic Crushing[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759

面内冲击荷载下半凹角蜂窝的抗冲击特性

doi: 10.11858/gywlxb.20190759
基金项目: 国家自然科学基金(11402035);陕西省自然科学基金(2017JM1012);中央高校基本科研业务费(3102018ZY017);钱学森空间技术实验室种子基金(QXS-ZZJJ-02)
详细信息
    作者简介:

    陈 鹏(1993-),男,硕士研究生,主要从事多孔轻质结构抗冲击性能研究.E-mail:mutouseng123@163.com

    通讯作者:

    侯秀慧(1983-),女,博士,讲师,主要从事多孔金属材料多功能特性及碳纳米管基本力学行为等研究. E-mail:houxiuhui@nwpu.edu.cn

  • 中图分类号: O347.3

Impact Resistance of Semi Re-Entrant Honeycombs under in-Plane Dynamic Crushing

  • 摘要: 半凹角蜂窝结构因其零泊松比特征,具有独特的变形方式。将其与传统正泊松比(正六边形)蜂窝以及负泊松比(凹角)蜂窝在面内冲击荷载作用下的抗冲击性能进行对比分析,揭示出零泊松比效应对动力学性能的影响。在给定胞元几何参数(长细比)的情况下,分析了3种蜂窝构型在不同冲击速度下的变形特征,得出半凹角蜂窝的零泊松比特性使结构的局部变形带以“I”型为主。根据一维冲击波理论,推导出半凹角蜂窝的平均抗压强度理论公式,与有限元结果进行对比,验证了该方法的有效性。数值结果表明,半凹角蜂窝的抗冲击性能介于正六边形蜂窝和凹角蜂窝之间。通过在半凹角蜂窝内部增加直杆,设计出一种新型零泊松比蜂窝,进一步提高了蜂窝结构的抗冲击性能,可为其他结构优化设计提供一定的理论参考。

     

  • 图  正六边形蜂窝、凹角蜂窝和半凹角蜂窝结构模型及代表性胞元

    Figure  1.  Structural models and representative basic cells for regular hexagon honeycombs, re-entrant honeycombs and semi re-entrant honeycombs

    图  半凹角蜂窝代表性胞元受力分析

    Figure  2.  Force analysis of representative cell of semi re-entrant honeycombs

    图  不同冲击速度下正六边形蜂窝的变形模式

    Figure  3.  Deformation modes of regular hexagon honeycombs under different impact velocities

    图  不同冲击速度下凹角蜂窝的变形模式

    Figure  4.  Deformation modes of re-entrant honeycombs under different impact velocities

    图  不同冲击速度下半凹角蜂窝结构的变形模式

    Figure  5.  Deformation modes of semi re-entrant honeycombs under different impact velocities

    图  不同冲击速度下半凹角蜂窝的名义应力-应变曲线(h=0.5 mm)

    Figure  6.  Nominal stress-strain curves of semi re-entrant honeycombs under different impact velocities (h=0.5 mm)

    图  不同胞壁厚度下半凹角蜂窝的名义应力-应变曲线(v=140 m/s)

    Figure  7.  Nominal stress-strain curves of semi re-entrant honeycombs under different cell wall thicknesses (v=140 m/s)

    图  代表性胞元

    Figure  8.  Representative basic cell

    图  压溃初始时刻(t0)和结束时刻(tf)蜂窝变形模式

    Figure  9.  Deformation modes at the initial (t0) and final moments (tf) of crushing

    图  10  3种蜂窝结构的冲击速度-平台应力曲线

    Figure  10.  Impact velocity versus plateau stress curves of three types of honeycombs

    图  11  半凹角蜂窝的应力云图(h=0.5 mm,v=70 m/s)

    Figure  11.  Stress contours of semi re-entrant honeycombs (h=0.5 mm, v=70 m/s)

    图  12  新型半凹角蜂窝的变形模式(h=0.5 mm,v=35 m/s)

    Figure  12.  Deformation modes of novel semi re-entrant honeycombs (h=0.5 mm, v=35 m/s)

    图  13  半凹角蜂窝与新型半凹角蜂窝的名义应力-应变曲线

    Figure  13.  Nominal stress-strain curves of semi re-entrant honeycombs and novel semi re-entrant honeycombs

    图  14  新型半凹角蜂窝与凹角蜂窝的名义应力-应变曲线

    Figure  14.  Nominal stress-strain curves of novel semi re-entrant honeycombs and re-entrant honeycombs

    图  15  3种蜂窝结构的 (a)冲击速度-平台应力曲线(h=0.4 mm)和(b)胞壁厚度-平台应力曲线(v=100 m/s)

    Figure  15.  Impact velocity (a) and cell wall thickness (b) versus plateau stress curves of three types of honeycombs (v=100 m/s)

    表  1  正六边形蜂窝的平均抗压强度

    Table  1.   Average crushing strength of regular hexagon honeycombs

    h/mmv/(m∙s−1)Average crushing strength/MPaDeviation/%
    Ref.[9]Numerical
    0.3 702.4912.2878.19
    0.31004.6774.8934.62
    0.4 703.7773.9524.63
    0.41006.8027.3848.56
    下载: 导出CSV

    表  2  半凹角蜂窝结构的平台应力

    Table  2.   Plateau stress of the semi re-entrant honeycombs

    h/mmv/(m∙s−1)Average crushing strength/MPaDeviation/%
    TheoreticalNumerical
    0.2 701.6431.5555.36
    1002.7882.8502.22
    1405.7385.9673.99
    20011.42111.5511.14
    0.3 702.9103.1809.28
    1005.2875.3400.99
    1409.7619.0127.67
    20019.26820.1814.74
    0.4 704.5534.8105.64
    1008.1348.2221.08
    14014.87513.6088.52
    20029.20028.7691.48
    0.5 706.6827.1707.30
    10011.82812.9919.83
    14021.51421.5450.14
    20042.09740.7743.14
    下载: 导出CSV
  • [1] ZHANG Q C, YANG X H, LI P, et al. Bioinspired engineering of honeycomb structure—using nature to inspire human innovation [J]. Progress in Materials Science, 2015, 74: 332–400. doi: 10.1016/j.pmatsci.2015.05.001
    [2] BITZER T. Honeycomb technology: materials, design, manufacturing, applications and testing [M]. New York: Springer Science & Business Media, 1997.
    [3] GRIMA J N, OLIVERI L, ATTARD D, et al. Hexagonal honeycombs with zero poisson’s ratios and enhanced stiffness [J]. Advanced Engineering Materials, 2010, 12(9): 855–862. doi: 10.1002/adem.201000140
    [4] NEVILLE R M, MONTI A, HAZRA K, et al. Transverse stiffness and strength of Kirigami zero-v peek honeycombs [J]. Composite Structures, 2014, 114(1): 30–40.
    [5] 程文杰, 周丽, 张平, 等. 零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用 [J]. 航空学报, 2015, 36(2): 680–690.

    CHENG W J, ZHOU L, ZHANG P, et al. Design and analysis of a zero poisson’s ratio mixed cruciform honeycomb and its application in flexible skin [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 680–690.
    [6] HUANG J, GONG X B, ZHANG Q H, et al. In-plane mechanics of a novel zero poisson’s ratio honeycomb core [J]. Composites Part B: Engineering, 2016, 89: 67–76. doi: 10.1016/j.compositesb.2015.11.032
    [7] PAPKA S D, KYRIAKIDES S. In-plane compressive response and crushing of honeycomb [J]. Journal of the Mechanics & Physics of Solids, 1994, 42(10): 1499–1532.
    [8] HU L L, YU T X. Dynamic crushing strength of hexagonal honeycombs [J]. International Journal of Impact Engineering, 2010, 37(5): 467–474. doi: 10.1016/j.ijimpeng.2009.12.001
    [9] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs—a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161–182. doi: 10.1016/S0734-743X(02)00056-8
    [10] HU L L, YOU F F, YU T X. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs [J]. Materials & Design, 2013, 46(4): 511–523.
    [11] HU L L, YU T X. Mechanical behavior of hexagonal honeycombs under low-velocity impact—theory and simulations [J]. International Journal of Solids and Structures, 2013, 50(20/21): 3152–3165. doi: 10.1016/j.ijsolstr.2013.05.017
    [12] HONG S T, PAN J, TYAN T, et al. Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads [J]. International Journal of Plasticity, 2008, 24(1): 89–117. doi: 10.1016/j.ijplas.2007.02.003
    [13] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: a structural review on the negative poisson’s ratio [J]. Computational Materials Science, 2012, 58: 140–153. doi: 10.1016/j.commatsci.2012.02.012
    [14] 卢子兴, 王欢, 杨振宇, 等. 星型-箭头蜂窝结构的面内动态压溃行为 [J]. 复合材料学报, 2019, 36(8): 1893–1900.

    LU Z X, WANG H, YANG Z Y, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure [J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893–1900.
    [15] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能 [J]. 爆炸与冲击, 2012, 32(5): 475–482. doi: 10.3969/j.issn.1001-1455.2012.05.005

    ZHANG X C, LIU Y, LI N. In-plane dynamic crushing of honeycombs with negative poisson’s ratio effects [J]. Explosion and Shock Waves, 2012, 32(5): 475–482. doi: 10.3969/j.issn.1001-1455.2012.05.005
    [16] LIU W Y, WANG N L, GUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure [J]. Materials & Design, 2016, 100: 84–91.
    [17] HOU X H, DENG Z C, ZHANG K. Dynamic crushing strength analysis of auxetic honeycombs [J]. Acta Mechanica Solida Sinica, 2016, 29(5): 490–501. doi: 10.1016/S0894-9166(16)30267-1
    [18] CHEN Y, FU M H. Mechanical properties of a novel zero poisson’s ratio honeycomb [J]. Advanced Engineering Materials, 2018, 20(2): 1700452.
    [19] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570. doi: 10.1016/S0734-743X(97)00016-X
    [20] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  7438
  • HTML全文浏览量:  3161
  • PDF下载量:  44
出版历程
  • 收稿日期:  2019-04-15
  • 修回日期:  2019-04-26

目录

    /

    返回文章
    返回