Dimensional Analysis of Ballistic Limit of Spherical Fragments Penetrating Multi-Layer Plate
-
摘要: 为了研究Q235钢多层板的抗侵彻性能,进行了直径为9.45 mm的钨合金球形破片侵彻7.2 mm和(3.6+3.6)mm厚Q235钢双层板试验,获得了相应的弹道极限。在此基础上,建立数值仿真模型,研究了钨合金球侵彻接触式等厚3层、4层、5层、6层板的弹道极限。通过量纲分析方法,分析了分层数对靶板弹道极限的影响。结果表明:对于球形破片,总厚度为7.2 mm的等厚双层板的抗侵彻性能高于单层板;当分层数大于2时,接触式多层等厚靶板的弹道极限随着层数的增加而减小,即分层数越多,靶板的抗侵彻性能越低,通过量纲分析方法得到了靶板分层数与破片弹道极限的关系。研究结果可为未来装甲防护设计提供一定的参考。Abstract: In order to study the anti-penetration performance of Q235 steel multi-layer plate, we carried out a
$\varnothing $ 9.45 mm spherical fragment of tungsten alloy to penetrate the 7.2 mm and (3.6+3.6) mm Q235 steel double-layer plates, and obtained the corresponding ballistic limits. On this basis, we established a numerical simulation model to study the ballistic limits of the laminated contact plates with three, four, five, and six layers of equal thickness penetrated by the tungsten ball. Through the dimensional method, we analyzed the effect of the number of layers on the ballistic limit of the target. The results show that for spherical fragments, the anti-penetration performance of the double-layer plate with a total thickness of 7.2 mm is higher than that of the single-layer plate; when the number of layers is greater than 2, the ballistic limit of the multi-layer target decreases with the increase of the number of layers. The relationship between the number of layers of the target and the ballistic limit of the fragment is obtained by the dimensional method. The results can provide a guidance for the design of armor protection in the future.-
Key words:
- spherical fragment /
- ballistic limit /
- multi-layer plate /
- dimensional analysis
-
表 1 破片侵彻试验结果
Table 1. Experimental results of fragment penetrating plate
Target type Initial velocity/(m∙s−1) Residual velocity/(m∙s−1) Phenomenon Single layer plate
7.2 mm494.3 Embedment 598.8 248.6 Penetration 662.0 350.2 Penetration 718.5 413.3 Penetration 726.4 423.0 Penetration 734.1 454.3 Penetration 766.1 479.2 Penetration 787.3 504.9 Penetration 837.0 558.9 Penetration Double layer plate
(3.6+3.6) mm455.3 Embedment 532.7 Embedment 604.0 194.2 Penetration 619.0 224.4 Penetration 631.4 246.1 Penetration 652.5 281.8 Penetration 738.0 400.7 Penetration 819.0 493.2 Penetration 表 2 钨合金球的材料模型参数
Table 2. Material model parameters of tungsten alloy ball
Density/(g·cm–3) Young modulus/GPa Poisson’s ratio Yield stress /MPa ETAN/MPa 18.2 357 0.303 1 506 762 BETA SRC SRP FS VP 1 3.9 6 1.2 0 表 3 Q235钢靶板的材料模型参数
Table 3. Material model parameters of Q235 steel plate
Density/(g·cm–3) G/GPa A/MPa B/MPa c m n 7.8 77.3 300 347 0.1 0.55 0.08 Tm/K Tr/K D1 D2 D3 D4 D5 1 795 300 0.3 0.9 2.8 0 0 表 4 破片侵彻靶板的仿真结果
Table 4. Simulation results of fragmentation penetrating the plate
Target type Initial velocity/(m∙s−1) Residual velocity/(m∙s−1) Relative error/% Phenomenon Simulation Experiment Single-layer plate
7.2 mm494.3 Embedment 598.8 243.8 248.6 1.93 Penetration 662.0 340.3 350.2 2.83 Penetration 718.5 408.9 413.3 1.06 Penetration 726.4 410.7 423.0 2.91 Penetration 734.1 435.8 454.3 4.07 Penetration 766.1 467.3 479.2 2.48 Penetration 787.3 487.8 504.9 3.39 Penetration 837.0 541.5 558.9 3.11 Penetration Double-layer plate
(3.6+3.6) mm532.7 Embedment 604.0 189.5 194.2 2.42 Penetration 619.0 217.4 224.4 3.12 Penetration 631.4 237.4 246.1 3.54 Penetration 652.5 270.5 281.8 4.01 Penetration 738.0 383.2 400.7 4.37 Penetration 819.0 470.7 493.2 4.56 Penetration 表 5 破片侵彻靶板的仿真结果
Table 5. Simulation results of fragmentation penetrating the plate
Target type Initial velocity/(m∙s−1) Residual velocity/(m∙s−1) Phenomenon Three-layer plate
(2.4+2.4+2.4) mm550 115 Penetration 600 228 Penetration 630 267 Penetration 680 342 Penetration 700 360 Penetration 750 417 Penetration Four-layer plate
(1.8+1.8+1.8+1.8) mm520 64 Penetration 550 157 Penetration 600 250 Penetration 650 318 Penetration 700 381 Penetration 750 434 Penetration Five-layer plate
(1.44+1.44+1.44+1.44+1.44) mm550 168 Penetration 600 258 Penetration 650 325 Penetration 700 389 Penetration 750 441 Penetration Six-layer plate
(1.2+1.2+1.2+1.2+1.2+1.2) mm550 184 Penetration 600 265 Penetration 650 332 Penetration 700 394 Penetration 750 450 Penetration 表 6 相关物理量与无量纲量
Table 6. Related physical quantities and dimensionless quantities
H/m ${{v_{{\rm{50}}}}}$/(m∙s−1) n ${\dfrac{H}{{{d_{\rm{p}}}}}}$ ${\dfrac{{{v_{50}}\sqrt {{\rho _{\rm{t}}}} }}{{\sqrt {{\sigma _{{\rm{st}}}}} }}}$ 0.002 40 527.9 3 0.254 0 0.003 041 0.001 80 512.7 4 0.190 5 0.002 954 0.001 44 507.2 5 0.152 4 0.002 922 0.001 20 500.7 6 0.127 0 0.002 885 表 7 破片侵彻靶板的仿真结果
Table 7. Simulation results of fragment penetrating the plate
Target type Initial velocity /(m∙s−1) Residual velocity/(m∙s−1) Phenomenon Eight-layer plate
(0.9+0.9+0.9+0.9+0.9+0.9+0.9+0.9) mm550 196 Penetration 600 284 Penetration 650 356 Penetration 700 410 Penetration 750 472 Penetration -
[1] 赵旭东, 高兴勇, 刘国庆. 装甲防护材料抗侵彻性能研究现状 [J]. 包装工程, 2017, 38(11): 117–122.ZHAO X D, GAO X Y, LIU G Q. Research status of anti-penetration performance of armor protective materials [J]. Packaging Engineering, 2017, 38(11): 117–122. [2] IQBAL M A, CHAKRABARTI A, BENIWALA S, et al. 3D numerical simulations of sharp nosed projectile impact on the ductile plates [J]. International Journal of Impact Engineering, 2010, 37(2): 185–195. doi: 10.1016/j.ijimpeng.2009.09.008 [3] DURMUS A, GUDEN M, GULCIMEN B, et al. Experimental investigations on the ballistic impact performances of cold rolled sheet metals [J]. Materials and Design, 2011, 32(2): 1356–1366. [4] GUPTA N K, IQBAL M A, SEKHON G S. Effect of projectile nose shape, impact velocity and plate thickness on deformation behavior of aluminum plates [J]. International Journal of Solids and Structures, 2007, 22(10): 3411–3439. [5] 邓云飞, 李剑峰, 孟凡柱. Q235钢单层及接触式多层板对卵形头弹抗侵彻特性 [J]. 机械工程学报, 2015, 51(17): 66–71.DENG Y F, LI J F, MENG F Z. Q235 anti-penetration characteristics of steel single-layer and contact-type multilayer boards against oval heads [J]. Journal of Mechanical Engineering, 2015, 51(17): 66–71. [6] 任善良, 文鹤鸣, 周琳. 平头弹穿透接触式双层金属板的理论研究 [J]. 高压物理学报, 2018, 32(3): 1–7.REN S L, WEN H M, ZHOU L. Theoretical study on penetrating contact double-layer metal plate [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 1–7. [7] 邓云飞, 张伟, 曹宗胜. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007DENG Y F, ZHANG W, CAO Z S. Effect of lamination sequence on the anti-penetration performance of double-layer A3 steel sheet [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007 [8] RECH R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. doi: 10.1115/1.3636566 [9] 钱伟长.穿甲力学 [M]. 北京: 国防工业出版社, 1984: 170–208.QIAN W C.Piercing mechanics [M]. Beijing: National Defense Industry Press, 1984: 170–208. [10] 马晓青. 冲击动力学 [M]. 北京: 北京理工大学出版社, 1992: 307–342.MA X Q. Impact dynamics [M]. Beijing: Beijing Institute of Technology Press, 1992: 307–342. [11] 马红磊, 胡更开, 李树奎. 97钨合金力学性能研究 [J]. 兵器材料学与工程, 2005, 26(9): 39–41.MA H L, HU G K, LI S K. Study on mechanical properties of 97 tungsten alloy [J]. Weapon Materials Science and Engineering, 2005, 26(9): 39–41. [12] 周捷, 智小琦, 徐锦波. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(2): 81–87. doi: 10.11883/bzycj-2018-0023ZHOU J, ZHI X Q, XU J B. Research on the penetration of small size fragments on individual protective equipment [J]. Explosion and Shock Waves, 2019, 39(2): 81–87. doi: 10.11883/bzycj-2018-0023 [13] 陈刚, 陈小伟, 陈忠富. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. doi: 10.3321/j.issn:1001-1455.2007.05.002CHEN G, CHEN X W, CHEN Z F. Numerical analysis of failure mode of 45 steel plate impacted by A3 steel blunt head [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. doi: 10.3321/j.issn:1001-1455.2007.05.002 [14] СЕДОВ Л И. 力学中的相似方法与量纲理论 [M]. 沈青, 倪锄非, 李维新, 译. 北京: 科学出版社, 1982.СЕДОВ Л И. Similar methods and dimensional theory in mechanics [M]. Translated by SHEN Q, NI C F, LI W X. Beijing: Science Press, 1982.