球形破片侵彻多层板弹道极限的量纲分析

王雪 智小琦 徐锦波 范兴华

王雪, 智小琦, 徐锦波, 范兴华. 球形破片侵彻多层板弹道极限的量纲分析[J]. 高压物理学报, 2019, 33(6): 065102. doi: 10.11858/gywlxb.20190757
引用本文: 王雪, 智小琦, 徐锦波, 范兴华. 球形破片侵彻多层板弹道极限的量纲分析[J]. 高压物理学报, 2019, 33(6): 065102. doi: 10.11858/gywlxb.20190757
WANG Xue, ZHI Xiaoqi, XU Jinbo, FAN Xinghua. Dimensional Analysis of Ballistic Limit of Spherical Fragments Penetrating Multi-Layer Plate[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065102. doi: 10.11858/gywlxb.20190757
Citation: WANG Xue, ZHI Xiaoqi, XU Jinbo, FAN Xinghua. Dimensional Analysis of Ballistic Limit of Spherical Fragments Penetrating Multi-Layer Plate[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065102. doi: 10.11858/gywlxb.20190757

球形破片侵彻多层板弹道极限的量纲分析

doi: 10.11858/gywlxb.20190757
详细信息
    作者简介:

    王 雪(1994-),女,硕士研究生,主要从事弹药工程与毁伤技术研究. E-mail:271976366@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事武器毁伤与装药技术研究. E-mail:zxq4060@sina.com

  • 中图分类号: TJ410.3

Dimensional Analysis of Ballistic Limit of Spherical Fragments Penetrating Multi-Layer Plate

  • 摘要: 为了研究Q235钢多层板的抗侵彻性能,进行了直径为9.45 mm的钨合金球形破片侵彻7.2 mm和(3.6+3.6)mm厚Q235钢双层板试验,获得了相应的弹道极限。在此基础上,建立数值仿真模型,研究了钨合金球侵彻接触式等厚3层、4层、5层、6层板的弹道极限。通过量纲分析方法,分析了分层数对靶板弹道极限的影响。结果表明:对于球形破片,总厚度为7.2 mm的等厚双层板的抗侵彻性能高于单层板;当分层数大于2时,接触式多层等厚靶板的弹道极限随着层数的增加而减小,即分层数越多,靶板的抗侵彻性能越低,通过量纲分析方法得到了靶板分层数与破片弹道极限的关系。研究结果可为未来装甲防护设计提供一定的参考。

     

  • 图  试验原理图

    Figure  1.  Experimental schematic

    图  弹托、破片及小药筒

    Figure  2.  Sabot, fragments and small cartridge

    图  单层板冲击试验后破片与冲塞状态

    Figure  3.  Fragmentation and plug after single layer impacting experiment

    图  试验后的单层板状态

    Figure  4.  Single-layer plate after experiment

    图  试验后的双层板状态

    Figure  5.  Double-layer plate after the test

    图  有限元模型

    Figure  6.  Finite element model

    图  数值模拟和试验得到的残余速度的比较

    Figure  7.  Comparison of residual velocity obtained by numerical simulation and experiment

    图  仿真结果

    Figure  8.  Simulation results

    图  多层板的数值模拟结果

    Figure  9.  Numerical simulation of multi-layer plate

    图  10  多层板残余速度的数值模拟

    Figure  10.  Numerical residual velocity of multi-layer plate

    表  1  破片侵彻试验结果

    Table  1.   Experimental results of fragment penetrating plate

    Target typeInitial velocity/(m∙s−1)Residual velocity/(m∙s−1)Phenomenon
    Single layer plate
    7.2 mm
    494.3Embedment
    598.8248.6Penetration
    662.0350.2Penetration
    718.5413.3Penetration
    726.4423.0Penetration
    734.1454.3Penetration
    766.1479.2Penetration
    787.3504.9Penetration
    837.0558.9Penetration
    Double layer plate
    (3.6+3.6) mm
    455.3Embedment
    532.7Embedment
    604.0 194.2Penetration
    619.0224.4Penetration
    631.4246.1Penetration
    652.5281.8Penetration
    738.0400.7Penetration
    819.0493.2Penetration
    下载: 导出CSV

    表  2  钨合金球的材料模型参数

    Table  2.   Material model parameters of tungsten alloy ball

    Density/(g·cm–3)Young modulus/GPaPoisson’s ratioYield stress /MPaETAN/MPa
    18.23570.3031 506762
    BETASRCSRPFSVP
    13.961.20
    下载: 导出CSV

    表  3  Q235钢靶板的材料模型参数

    Table  3.   Material model parameters of Q235 steel plate

    Density/(g·cm–3)G/GPaA/MPaB/MPacmn
    7.877.33003470.10.550.08
    Tm/KTr/KD1D2D3D4D5
    1 7953000.30.92.800
    下载: 导出CSV

    表  4  破片侵彻靶板的仿真结果

    Table  4.   Simulation results of fragmentation penetrating the plate

    Target typeInitial velocity/(m∙s−1)Residual velocity/(m∙s−1)Relative error/%Phenomenon
    SimulationExperiment
    Single-layer plate
    7.2 mm
    494.3Embedment
    598.8243.8248.61.93Penetration
    662.0340.3350.22.83Penetration
    718.5408.9413.31.06Penetration
    726.4410.7423.02.91Penetration
    734.1435.8454.34.07Penetration
    766.1467.3479.22.48Penetration
    787.3487.8504.93.39Penetration
    837.0541.5558.93.11Penetration
    Double-layer plate
    (3.6+3.6) mm
    532.7Embedment
    604.0189.5194.22.42Penetration
    619.0217.4224.43.12Penetration
    631.4237.4246.13.54Penetration
    652.5270.5281.84.01Penetration
    738.0383.2400.74.37Penetration
    819.0470.7493.24.56Penetration
    下载: 导出CSV

    表  5  破片侵彻靶板的仿真结果

    Table  5.   Simulation results of fragmentation penetrating the plate

    Target typeInitial velocity/(m∙s−1)Residual velocity/(m∙s−1)Phenomenon
    Three-layer plate
    (2.4+2.4+2.4) mm
    550115Penetration
    600228Penetration
    630267Penetration
    680342Penetration
    700360Penetration
    750417Penetration
    Four-layer plate
    (1.8+1.8+1.8+1.8) mm
    52064Penetration
    550157Penetration
    600250Penetration
    650318Penetration
    700381Penetration
    750434Penetration
    Five-layer plate
    (1.44+1.44+1.44+1.44+1.44) mm
    550168Penetration
    600258Penetration
    650325Penetration
    700389Penetration
    750441Penetration
    Six-layer plate
    (1.2+1.2+1.2+1.2+1.2+1.2) mm
    550184Penetration
    600265Penetration
    650332Penetration
    700394Penetration
    750450Penetration
    下载: 导出CSV

    表  6  相关物理量与无量纲量

    Table  6.   Related physical quantities and dimensionless quantities

    H/m${{v_{{\rm{50}}}}}$/(m∙s−1)n${\dfrac{H}{{{d_{\rm{p}}}}}}$${\dfrac{{{v_{50}}\sqrt {{\rho _{\rm{t}}}} }}{{\sqrt {{\sigma _{{\rm{st}}}}} }}}$
    0.002 40527.930.254 00.003 041
    0.001 80512.740.190 50.002 954
    0.001 44507.250.152 40.002 922
    0.001 20500.760.127 00.002 885
    下载: 导出CSV

    表  7  破片侵彻靶板的仿真结果

    Table  7.   Simulation results of fragment penetrating the plate

    Target typeInitial velocity /(m∙s−1)Residual velocity/(m∙s−1)Phenomenon
    Eight-layer plate
    (0.9+0.9+0.9+0.9+0.9+0.9+0.9+0.9) mm
    550196Penetration
    600284Penetration
    650356Penetration
    700410Penetration
    750472Penetration
    下载: 导出CSV
  • [1] 赵旭东, 高兴勇, 刘国庆. 装甲防护材料抗侵彻性能研究现状 [J]. 包装工程, 2017, 38(11): 117–122.

    ZHAO X D, GAO X Y, LIU G Q. Research status of anti-penetration performance of armor protective materials [J]. Packaging Engineering, 2017, 38(11): 117–122.
    [2] IQBAL M A, CHAKRABARTI A, BENIWALA S, et al. 3D numerical simulations of sharp nosed projectile impact on the ductile plates [J]. International Journal of Impact Engineering, 2010, 37(2): 185–195. doi: 10.1016/j.ijimpeng.2009.09.008
    [3] DURMUS A, GUDEN M, GULCIMEN B, et al. Experimental investigations on the ballistic impact performances of cold rolled sheet metals [J]. Materials and Design, 2011, 32(2): 1356–1366.
    [4] GUPTA N K, IQBAL M A, SEKHON G S. Effect of projectile nose shape, impact velocity and plate thickness on deformation behavior of aluminum plates [J]. International Journal of Solids and Structures, 2007, 22(10): 3411–3439.
    [5] 邓云飞, 李剑峰, 孟凡柱. Q235钢单层及接触式多层板对卵形头弹抗侵彻特性 [J]. 机械工程学报, 2015, 51(17): 66–71.

    DENG Y F, LI J F, MENG F Z. Q235 anti-penetration characteristics of steel single-layer and contact-type multilayer boards against oval heads [J]. Journal of Mechanical Engineering, 2015, 51(17): 66–71.
    [6] 任善良, 文鹤鸣, 周琳. 平头弹穿透接触式双层金属板的理论研究 [J]. 高压物理学报, 2018, 32(3): 1–7.

    REN S L, WEN H M, ZHOU L. Theoretical study on penetrating contact double-layer metal plate [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 1–7.
    [7] 邓云飞, 张伟, 曹宗胜. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007

    DENG Y F, ZHANG W, CAO Z S. Effect of lamination sequence on the anti-penetration performance of double-layer A3 steel sheet [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007
    [8] RECH R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. doi: 10.1115/1.3636566
    [9] 钱伟长.穿甲力学 [M]. 北京: 国防工业出版社, 1984: 170–208.

    QIAN W C.Piercing mechanics [M]. Beijing: National Defense Industry Press, 1984: 170–208.
    [10] 马晓青. 冲击动力学 [M]. 北京: 北京理工大学出版社, 1992: 307–342.

    MA X Q. Impact dynamics [M]. Beijing: Beijing Institute of Technology Press, 1992: 307–342.
    [11] 马红磊, 胡更开, 李树奎. 97钨合金力学性能研究 [J]. 兵器材料学与工程, 2005, 26(9): 39–41.

    MA H L, HU G K, LI S K. Study on mechanical properties of 97 tungsten alloy [J]. Weapon Materials Science and Engineering, 2005, 26(9): 39–41.
    [12] 周捷, 智小琦, 徐锦波. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(2): 81–87. doi: 10.11883/bzycj-2018-0023

    ZHOU J, ZHI X Q, XU J B. Research on the penetration of small size fragments on individual protective equipment [J]. Explosion and Shock Waves, 2019, 39(2): 81–87. doi: 10.11883/bzycj-2018-0023
    [13] 陈刚, 陈小伟, 陈忠富. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. doi: 10.3321/j.issn:1001-1455.2007.05.002

    CHEN G, CHEN X W, CHEN Z F. Numerical analysis of failure mode of 45 steel plate impacted by A3 steel blunt head [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. doi: 10.3321/j.issn:1001-1455.2007.05.002
    [14] СЕДОВ Л И. 力学中的相似方法与量纲理论 [M]. 沈青, 倪锄非, 李维新, 译. 北京: 科学出版社, 1982.

    СЕДОВ Л И. Similar methods and dimensional theory in mechanics [M]. Translated by SHEN Q, NI C F, LI W X. Beijing: Science Press, 1982.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  7886
  • HTML全文浏览量:  3639
  • PDF下载量:  51
出版历程
  • 收稿日期:  2019-04-10
  • 修回日期:  2019-05-05
  • 发布日期:  2019-09-25

目录

    /

    返回文章
    返回