爆炸烧结制备W-Al含能结构材料及其准静态压缩特性研究

王比 安二峰 陈鹏万 周强 高鑫

王比, 安二峰, 陈鹏万, 周强, 高鑫. 爆炸烧结制备W-Al含能结构材料及其准静态压缩特性研究[J]. 高压物理学报, 2019, 33(6): 063401. doi: 10.11858/gywlxb.20190753
引用本文: 王比, 安二峰, 陈鹏万, 周强, 高鑫. 爆炸烧结制备W-Al含能结构材料及其准静态压缩特性研究[J]. 高压物理学报, 2019, 33(6): 063401. doi: 10.11858/gywlxb.20190753
WANG Bi, AN Erfeng, CHEN Pengwan, ZHOU Qiang, GAO Xin. Fabrication of W-Al Energetic Structural Materials by Explosive Consolidation and Investigation of Its Quasi-Static Compression Properties[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 063401. doi: 10.11858/gywlxb.20190753
Citation: WANG Bi, AN Erfeng, CHEN Pengwan, ZHOU Qiang, GAO Xin. Fabrication of W-Al Energetic Structural Materials by Explosive Consolidation and Investigation of Its Quasi-Static Compression Properties[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 063401. doi: 10.11858/gywlxb.20190753

爆炸烧结制备W-Al含能结构材料及其准静态压缩特性研究

doi: 10.11858/gywlxb.20190753
基金项目: 国家自然科学基金青年基金(11402026)
详细信息
    作者简介:

    王 比(1993-),男,硕士,主要从事铝基含能材料制备及其性能表征研究.E-mail:1244538448@qq.com

    通讯作者:

    周 强(1983-),男,博士,特别副研究员,主要从事材料冲击动力学、爆炸加工等研究.E-mail:zqpcgm@gmail.com

  • 中图分类号: O521.9; TG392

Fabrication of W-Al Energetic Structural Materials by Explosive Consolidation and Investigation of Its Quasi-Static Compression Properties

  • 摘要: 通过爆炸烧结法,采用不同粒度的W、Al混合粉末,成功制备了近乎致密的W-Al含能结构材料(ESM)。研究发现:冲击波压力是粉末致密化的主导因素,粉末粒径对烧结密度和微观结构的影响显著,W的粒径越小,颗粒团聚越明显,从而阻碍致密化,在致密块体中形成连续分布的W相。所制备样品的最大抗压强度和失效应变分别达到288 MPa和20%,材料的力学性能和断裂模式主要取决于连续相,Al相连续的ESM抗压强度低、塑性较好,呈轴向劈裂破坏;而W相连续的ESM则表现出脆性和高抗压强度,破坏模式为剪切破坏,与Al的低强度高塑性和W高强度脆性特性一致。

     

  • 图  不同W粒径的W-Al粉末SEM图

    Figure  1.  SEM micrographs of the origin powders with various W particle size

    图  V型混料机(a)和样品管(b)

    Figure  2.  V-blender (a) and sample tube (b)

    图  柱面单管爆炸烧结实验装置

    Figure  3.  Single tube explosive setup for the explosive shock consolidation of powder mixtures

    图  试验回收的样品管(a)和烧结样品(b)

    Figure  4.  The recovered sample tubes (a) and the sample (b)

    图  线扫描EDS图像

    Figure  5.  EDS diagram of line scanning

    图  样品的XRD谱

    Figure  6.  XRD patterns of samples

    图  疏松物质压力-比容曲线(a)及炸药与材料相互作用曲线(b)[19]

    Figure  7.  p-V curve of porous material (a) and explosive-material interaction curve (b)[19]

    图  W-Al材料的横截面SEM图

    Figure  8.  Cross-sectional SEM micrographs of W-Al consolidated mixtures

    图  准静态压缩下样品的应力-应变曲线

    Figure  9.  Stress-strain curve of quasi-static compression

    图  10  准静态加载条件下W-Al压缩宏观变形形貌

    Figure  10.  The morphologies of the samples before and after quasi-static compression

    图  11  准静态加载下两种不同失效形式的SEM图像

    Figure  11.  SEM image of different fracture failure mode of samples under quasi-static loading

    表  1  试验结果

    Table  1.   Results of compression experiments

    No.W/Al particle type(ρI/ρT)/%(ρF/ρT)/%Compressive strength/MPaFracture strain/%Intermetallic
    1A:10–20 μm61.0 99.420715None
    2A:10–20 μm69.7100.019315None
    3A:10–20 μm80.6100.020420None
    4B:5–10 μm 50.0 96.5288 8None
    5B:5–10 μm 61.4 98.726110None
    6C:1–5 μm 62.1 95.7241 7None
    7C:1–5 μm 68.3 96.1244 6None
    8C:1–5 μm 73.3 96.4246 7None
     Note: ρI, ρT and ρF are initial, final and theoretical densities, respectively.
    下载: 导出CSV
  • [1] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. doi: 10.3969/j.issn.1006-9941.2009.06.021

    ZHANG X F, ZHAO X N. Research progress of multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. doi: 10.3969/j.issn.1006-9941.2009.06.021
    [2] HUGH E. Reactive fragment: US3961576 [P]. 1973–06–25.
    [3] 刘晓俊, 任会兰. 一种反应材制备及准态力学特性研究 [J]. 北京理工大学学报, 2016, 36(4): 365–369.

    LIU X J, REN H L. Preparation of a reactive material and its quasi-state mechanical properties [J]. Journal of Beijing Institute of Technology, 2016, 36(4): 365–369.
    [4] WANG H X, LI Y C, FENG B. Compressive properties of PTFE/Al/Ni composite under uniaxial loading [J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2331–2336. doi: 10.1007/s11665-017-2666-y
    [5] XU F Y, LIU S B, ZHENG Y F. Quasi-static compression properties and failure of PTFE/Al/W reactive materials [J]. Advanced Engineering Materials, 2016, 19(1): 1600350.
    [6] XU S, YANG S, ZHANG W. The mechanical behaviors of polytetrafluorethylene/Al/W energetic composites [J]. Journal of Physics Condensed Matter: AnInstitute of Physics Journal, 2009, 21(28): 285401. doi: 10.1088/0953-8984/21/28/285401
    [7] GE C, MAIMAITITUERSUN W, DONG Y. A study on the mechanical properties and impact-induced initiation characteristics of brittle PTFE/Al/W reactive materials [J]. Materials, 2017, 10(5): 452. doi: 10.3390/ma10050452
    [8] 刘晓俊, 任会兰, 宁建国. Zr-W多功能含能结构材料的制备及动态压缩特性 [J]. 复合材料学报, 2016, 33(10): 2297–2302.

    LIU X J, REN H L, NING J G. Preparation and dynamic compression properties of Zr-W multifunctional energetic structural materials [J]. Journal of Composite Materials, 2016, 33(10): 2297–2302.
    [9] 王占磊. 爆炸压实 W-Cu 纳米合金及其聚能破甲应用研究 [D]. 大连: 大连理工大学, 2012.

    WANG Z L. Explosive compaction W-Cu nano-alloy and its application of energy-absorbing armor [D]. Dalian: Dalian University of Technology, 2012.
    [10] MAMALIS A G, VOTTEA I N, MANOLAKOS D E. On the modelling of the compaction mechanism of shock compacted powders [J]. Journal of Materials Processing Technology, 2001, 108(2): 165–178. doi: 10.1016/S0924-0136(00)00748-2
    [11] MORRIS D G. Bonding processes during the dynamic compaction of metallic powders [J]. Materials Science & Engineering, 1983, 57(2): 187–195.
    [12] FARINHA A R, MENDES R, BARANDA J, et al. Behavior of explosive compacted/consolidated of nanometric copper powders [J]. Journal of Alloys & Compounds, 2009, 483(1–2): 235–238.
    [13] EAKINS D, THADHANI N N. Shock-induced reaction in a flake nickel + spherical aluminum powder mixture [J]. Journal of Applied Physics, 2006, 100(11): 113521. doi: 10.1063/1.2396797
    [14] EAKINS D, THADHANI N N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture [J]. Journal of Applied Physics, 2007, 101(4): 3635.
    [15] EAKINS D E, THADHANI N N. The shock-densification behavior of three distinct Ni+Al powder mixtures [J]. Applied Physics Letters, 2008, 92(11): 111903. doi: 10.1063/1.2896653
    [16] EAKINS D E, THADHANI N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures [J]. Acta Materialia, 2008, 56(7): 1496–1510.
    [17] YANG R Y, YU A B, CHOI S K. Agglomeration of fine particles subjected to centripetal compaction [J]. Powder Technology, 2008, 184(1): 122–129. doi: 10.1016/j.powtec.2007.08.010
    [18] 金属材料室温压缩试验方法: GB/T 7314–2005 [S]. 北京: 国家质量监督检验检疫总局, 2005.
    [19] 张庆明, 刘彦, 黄风雷.材料的动力学行为 [M]. 北京: 国防工业出版社, 2006: 103-182.

    ZHANG Q M, LIU Y, HUANG F L.Dynamic behavior of materials [M]. Beijing: National Defence Industry Press, 2006: 103–182.
    [20] WEI C T, VITALI E, JIANG F. Quasi-static and dynamic response of explosively consolidated metal-aluminum powder mixtures [J]. Acta Materialia, 2012, 60(3): 1418–1432.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  8893
  • HTML全文浏览量:  3223
  • PDF下载量:  46
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-04-13
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回