压缩载荷作用下锂离子电池的安全性能

范文杰 薛鹏程 王根伟 王彬

范文杰, 薛鹏程, 王根伟, 王彬. 压缩载荷作用下锂离子电池的安全性能[J]. 高压物理学报, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752
引用本文: 范文杰, 薛鹏程, 王根伟, 王彬. 压缩载荷作用下锂离子电池的安全性能[J]. 高压物理学报, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752
FAN Wenjie, XUE Pengcheng, WANG Genwei, WANG Bin. Safety Performance of Power Lithium Ion Battery under Compressive Load[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752
Citation: FAN Wenjie, XUE Pengcheng, WANG Genwei, WANG Bin. Safety Performance of Power Lithium Ion Battery under Compressive Load[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752

压缩载荷作用下锂离子电池的安全性能

doi: 10.11858/gywlxb.20190752
基金项目: 国家自然科学基金(11872265);山西省青年科技研究基金(201701D221142)
详细信息
    作者简介:

    范文杰(1991-),男,硕士研究生,主要从事动力电池在机械滥用下安全性能研究.E-mail: 852591416@qq.com

    通讯作者:

    王根伟(1974-),男,博士,副教授,主要从事新能源汽车安全与轻量化研究.E-mail: gwang@tyut.edu.cn

  • 中图分类号: O348.3

Safety Performance of Power Lithium Ion Battery under Compressive Load

  • 摘要: 动力电池的安全性是制约电动汽车快速发展的重要因素之一。以圆柱形18650动力锂离子电池为研究对象,分别从径向和轴向对不同荷电状态的单体电池进行压缩加载实验,研究了锂离子电池在载荷作用过程中的力学响应、电压变化、温度变化以及失效破坏模式。结果表明:荷电状态、加载速度以及加载方向的不同都会对锂离子电池的安全性能产生一定的影响。电池在发生较大变形时会出现电解液泄漏和瞬间短路现象,短路后电池的温度在短时间内会急剧升高。在径向压缩实验中,当荷电状态较高、加载速度较快时,电池在发生变形后会出现爆炸喷火等剧烈的热失控现象。研究锂离子电池在受到外载荷作用时的机械完整性对汽车的安全性设计具有十分重要的意义。

     

  • 图  万能试验机

    Figure  1.  Universal testing machine

    图  红外热像仪

    Figure  2.  Infrared thermal camera

    图  不同荷电状态电池载荷-变形曲线

    Figure  3.  Load-deformation curves of different SOC batteries

    图  压缩后锂离子电池的横截面

    Figure  4.  Cross section of the deformed lithium ion battery

    图  不同荷电状态电池电压-变形曲线

    Figure  5.  Voltage-deformation curves of different SOC batteries

    图  电池在不同加载速度下的载荷-变形曲线

    Figure  6.  Load-deformation curves of battery at different loading speeds

    图  电池在不同加载速度下的电压-变形曲线

    Figure  7.  Voltage-deformation curve of battery at different loading speeds

    图  不同压缩速度下电池失效后表面温度分布

    Figure  8.  Temperature of battery surface after failure at different compression speeds

    图  轴向压缩载荷-时间曲线和温度-时间曲线

    Figure  9.  Load-time curve and temperature-time curve of battery under axial compression

  • [1] XI J, LI M, XU M. Optimal energy management strategy for battery powered electric vehicles [J]. Applied Energy, 2014, 134: 332–341. doi: 10.1016/j.apenergy.2014.08.033
    [2] 许骏, 王璐冰, 刘冰河. 锂离子电池机械完整性研究现状和展望 [J]. 汽车安全与节能学报, 2017, 8(1): 15–29. doi: 10.3969/j.issn.1674-8484.2017.01.002

    XU J, WANG L B, LIU B H. Review for mechanical integrity of lithium-ion battery [J]. Automotive Safety and Energy, 2017, 8(1): 15–29. doi: 10.3969/j.issn.1674-8484.2017.01.002
    [3] ZHU J, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries [J]. Journal of Power Sources, 2018, 378: 153–168. doi: 10.1016/j.jpowsour.2017.12.034
    [4] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions [J]. Journal of Power Sources, 2012, 220: 360–372. doi: 10.1016/j.jpowsour.2012.07.057
    [5] KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells [J]. International Journal of Impact Engineering, 2017, 108: 205–216. doi: 10.1016/j.ijimpeng.2017.04.025
    [6] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. doi: 10.1016/j.jpowsour.2014.05.078
    [7] PFRANG A, KERSYS A, KRISTON A, et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells [J]. Journal of Power Sources, 2018, 392: 168–175. doi: 10.1016/j.jpowsour.2018.03.065
    [8] 郑文杰. 车用动力电池的挤压力学响应特性研究及碰撞安全性分析[D]. 广州: 华南理工大学, 2018: 1–2.

    ZHENG W J. Study on compressive mechanical response characteristics and collision safety of automobile power batteries[D]. Guangzhou: South China University of Technology, 2018: 1–2.
    [9] 田君, 田崔钧, 王一拓, 等. 锂离子电池安全性测试与评价方法分析 [J]. 储能科学与技术, 2018, 7(6): 1128–1134.

    TIAN J, TIAN C J, WANG Y T, et al. Safety test and evaluation method of lithium ion battery [J]. Energy Storage Science and Technology, 2018, 7(6): 1128–1134.
    [10] 梁国周, 张一鸣, 田爽, 等. 锂离子电池针刺安全性研究概览 [J]. 电源技术, 2016(12): 2472–2475. doi: 10.3969/j.issn.1002-087X.2016.12.052

    LIANG G Z, ZHANG Y M, TIAN S, et al. Nail penetration safety test of lithium-ion batteries [J]. Chinese Journal of Power Sources, 2016(12): 2472–2475. doi: 10.3969/j.issn.1002-087X.2016.12.052
    [11] SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity [J]. Journal of Power Sources, 2012, 201(3): 307–321.
    [12] XU J, LIU B, WANG X, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–189. doi: 10.1016/j.apenergy.2016.03.108
    [13] XU J, JIA Y, LIU B, et al. Coupling effect of state-of-health and state-of-charge on the mechanical integrity of lithium-ion batteries [J]. Experimental Mechanics, 2018, 58(4): 633–643. doi: 10.1007/s11340-018-0380-9
    [14] LIU B, JIA Y, LI J, et al. Safety issues caused by internal short circuits in lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(43): 21475–21484. doi: 10.1039/C8TA08997C
    [15] WANG L, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset [J]. Journal of Power Sources, 2019, 413: 284–292. doi: 10.1016/j.jpowsour.2018.12.059
    [16] ZHU J, ZHANG X, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression [J]. Journal of Power Sources, 2016, 336: 332–340. doi: 10.1016/j.jpowsour.2016.10.064
    [17] ZHANG X, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery [J]. Journal of Power Sources, 2015, 280: 47–56. doi: 10.1016/j.jpowsour.2015.01.077
    [18] ZHANG X, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators [J]. Journal of Power Sources, 2016, 327: 693–701. doi: 10.1016/j.jpowsour.2016.07.078
    [19] WANG L, YIN S, ZHANG C, et al. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries [J]. Journal of Power Sources, 2018, 392: 265–273. doi: 10.1016/j.jpowsour.2018.05.007
    [20] XU J, LIU B, HU D. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries [J]. Scientific Reports, 2016, 6(1): 21829. doi: 10.1038/srep21829
  • 加载中
图(9)
计量
  • 文章访问数:  8641
  • HTML全文浏览量:  3198
  • PDF下载量:  61
出版历程
  • 收稿日期:  2019-03-30
  • 修回日期:  2019-04-16

目录

    /

    返回文章
    返回