分子动力学方法在金属材料动态响应研究中的应用

邓小良 李博 汤观晴 祝文军

邓小良, 李博, 汤观晴, 祝文军. 分子动力学方法在金属材料动态响应研究中的应用[J]. 高压物理学报, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750
引用本文: 邓小良, 李博, 汤观晴, 祝文军. 分子动力学方法在金属材料动态响应研究中的应用[J]. 高压物理学报, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750
DENG Xiaoliang, LI Bo, TANG Guanqing, ZHU Wenjun. Application of Molecular Dynamics Simulation to Dynamic Response of Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750
Citation: DENG Xiaoliang, LI Bo, TANG Guanqing, ZHU Wenjun. Application of Molecular Dynamics Simulation to Dynamic Response of Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750

分子动力学方法在金属材料动态响应研究中的应用

doi: 10.11858/gywlxb.20190750
基金项目: 科学挑战专题(TZ201601);冲击波物理与爆轰物理重点实验室基金(6142A0305010717, JCKYS2018212011)
详细信息
    作者简介:

    邓小良(1978-),男,博士,副研究员,主要从事材料动态力学性能研究. E-mail: xiaoliangdeng@163.com

  • 中图分类号: O521.2; O347.5

Application of Molecular Dynamics Simulation to Dynamic Response of Metals

  • 摘要: 随着计算机技术和实验诊断技术的发展,分子动力学(MD)方法在冲击动力学领域发挥着越来越重要的作用。从MD方法的基本原理出发,介绍了积分算法、相互作用势、常用的数据处理方法,系统梳理了MD方法在冲击加载下金属材料的塑性变形、相变、动态损伤断裂(层裂)等研究的应用。其中:在冲击塑性方面,主要阐述单晶、双晶和多晶体系中的塑性变形机理,以及变形过程与微结构等的联系;在冲击相变方面,主要以金属铁为例,介绍耦合冲击相变与冲击塑性的MD计算模拟工作;在动态损伤断裂方面,主要阐述冲击加载下金属材料中孔洞动态演化及贯通、激光加载下材料的动态响应等工作。最后,对MD方法的未来应用进行了展望,以期为相关领域的研究提供参考。

     

  • 图  (a)冲击加载下样品中的波结构示意图,(b)实验测量的应力剖面或自由面速度历史剖面示意图

    Figure  1.  (a) Diagram of wave structure in the sample under impact loading; (b) diagram of the stress profile or the free surface velocity history profile measured in the experiment

    图  单晶Ta沿[110]冲击形成的变形孪晶图案[20]:(a)原子相对于冲击方向的取向着色,(b)仅显示非bcc原子

    Figure  2.  Deformation twin pattern observed in Ta for impact loading along [110] direction: (a) atoms are colored according to the orientation relative to the impact direction; (b) snapshot for non-bcc atoms in the simulation

    图  含CTB(a)和SITB(b)的双晶铜在粒子速度up=0.375 km/s的冲击加载下的x-t图,以及不同加载强度下弹性波在SITB处引起的塑性变形((c)~(e))(P表示所处区域为塑性变形区,9R表示重复的堆垛序列:ABCBCACAB)[23]

    Figure  3.  (a) and (b) represent the x-t diagram of the twin-crystal copper containing CTB and SITB under the impact loading with up=0.375 km/s, (c)–(e) represents the plastic deformation caused by elastic wave at SITB under different loading strengths (The P indicates the plastic deformation region. The 9R represents the repeated stacking sequence: ABCBCACAB.)[23]

    图  纳米柱状晶在冲击压缩下的缺陷结构图(a)及对应的取向分析图(b)[25]

    Figure  4.  Defect structure diagram (a) and corresponding orientation analysis diagram (b) of nano-columnar crystals under impact compression

    图  不同速度下应力剖面和原子结构图(bcc结构原子未显示,红色、黄色和黑蓝色分别代表hcp相、fcc相和晶格缺陷;弹性波区、塑性波区、混合相区和Hugoniot状态区的分界处用字母a、b、c表示)[8]

    Figure  5.  Stress profiles and atomic structure diagrams at different velocities (The bcc structure are not shown. Red represents hcp phase, yellow represents fcc phase, and black and blue represent lattice defects. The boundaries between the elastic wave region, the plastic wave region, the mixed phase region and the Hugoniot state region are given by the letters a, b, and c, respectively.)[8]

    图  不同晶向加载下金属铜中单孔洞的演化及周围位错发射过程[59]

    Figure  6.  Evolution of single void and surrounding dislocation emission process in copper for different grain orientations[59]

    图  多晶钽层裂的微观结构分析((c)、(d)、(e)对应(a)和(b)中标记的矩形区域;(c)是在层裂较远的区域,初期层裂表现为样品中出现分散的小孔洞,EBSD扫描显示了晶界和晶内的孔洞;(d)和(e)为层裂正下方区域,该区域内颗粒尺寸较小)

    Figure  7.  Microstructural analysis of polycrystalline tantalum spallation (The marked rectangular regions in (a, b) correspond to (c, d, e). (c) Away from the spallation, incipient spallation can be seen as voids scattered throughout the specimen. The EBSD scans show the voids at the grain boundaries as well as grain interiors. The particle size is small within regions of (d) and (e) which are around the spallation zone.)

    图  MD模拟与实验在自由面处测得的层裂强度与应变率的关系曲线[75]

    Figure  8.  Relationship between the laminar fracture strength and the strain rate measured at the free surface of MD simulations and experiments[75]

    图  Cr靶在30个脉冲激光照射下产生不同类型的纳米尖峰的SEM显微照片(激光能量密度为0.3 J/cm2,该能量密度小于导致相爆炸能量密度阈值的10%)

    Figure  9.  SEM micrograph of different types of nanospikes generated in Cr target irradiated by 30 laser pulses (The laser energy density was 0.3 J/cm2, less than 10% of the energy density threshold for phase explosion.)

    图  10  双温模型模拟中能量密度为298 mJ/cm2(接近相爆炸阈值)、脉冲宽度为200 fs的激光辐照大块Cr靶时得到的原子构型图[87]

    Figure  10.  Atomic configuration diagram was obtained by the laser irradiation of a large Cr target with the energy density of 298 mJ/cm2 (close to the phase explosion threshold) and pulse width of 200 fs in the two-temperature model simulation

  • [1] MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, 1994.
    [2] ALLEN M P, TILDESLEY D J. Computer simulation of liquids [M]. Oxford: Oxford University Press, 2017.
    [3] PEREZ D, LEWIS L J. Ablation of solids under femtosecond laser pulses [J]. Physical Review Letters, 2002, 89(25): 255504. doi: 10.1103/PhysRevLett.89.255504
    [4] 吴寒, 张楠, 何淼, 等. 氩、铝原子相互作用势的计算及其在飞秒激光烧蚀分子动力学模拟中的应用 [J]. 中国激光, 2016, 43(8): 116–122.

    WU H, ZHANG N, HE M, et al. Calculation of argon-aluminum interatomic potential and its application in molecular dynamics simulation of femtosecond laser ablation [J]. Chinese Journal of Lasers, 2016, 43(8): 116–122.
    [5] DAW M S, BASKES M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Physical Review Letters, 1983, 50(17): 1285–1288. doi: 10.1103/PhysRevLett.50.1285
    [6] MISHIN Y, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations [J]. Physical Review B, 2001, 63(22): 224106. doi: 10.1103/PhysRevB.63.224106
    [7] 张邦维. 嵌入原子方法理论及其在材料科学中的应用: 原子尺度材料设计理论[M]. 长沙: 湖南大学出版社, 2003: 245–257.
    [8] WANG K, ZHU W, XIAO S, et al. Coupling between plasticity and phase transition of polycrystalline iron under shock compressions [J]. International Journal of Plasticity, 2015, 71: 218–236. doi: 10.1016/j.ijplas.2015.01.002
    [9] WANG K, XIAO S, DENG H, et al. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals [J]. International Journal of Plasticity, 2014, 59: 180–198. doi: 10.1016/j.ijplas.2014.03.007
    [10] 王昆. 铁冲击塑性与相变的原子模拟[D]. 长沙: 湖南大学, 2015.
    [11] KELCHNER C L, PLIMPTON S J, HAMILTON J C. Dislocation nucleation and defect structure during surface indentation [J]. Physical Review B, 1998, 58(17): 11085. doi: 10.1103/PhysRevB.58.11085
    [12] FAKEN D, JÓNSSON H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science, 1994, 2(2): 279–286. doi: 10.1016/0927-0256(94)90109-0
    [13] REIN TEN WOLDE P, RUIZ-MONTERO M J, FRENKEL D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling [J]. The Journal of Chemical Physics, 1996, 104(24): 9932–9947. doi: 10.1063/1.471721
    [14] STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
    [15] GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609–2615. doi: 10.1007/s11661-004-0206-5
    [16] LUO S N, AN Q, GERMANN T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. Journal of Applied Physics, 2009, 106(1): 013502. doi: 10.1063/1.3158062
    [17] HOLIAN B L, LOMDAHL P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science, 1998, 280(5372): 2085. doi: 10.1126/science.280.5372.2085
    [18] BLEWITT T H, COLTMAN R R, REDMAN J K. Low-temperature deformation of copper single crystals [J]. Journal of Applied Physics, 1957, 28(6): 651–660. doi: 10.1063/1.1722824
    [19] ROHATGI A, VECCHIO K S, GRAY G T. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: deformation twinning, work hardening, and dynamic recovery [J]. Metallurgical and Materials Transactions A, 2001, 32(1): 135–145. doi: 10.1007/s11661-001-0109-7
    [20] RAVELO R, GERMANN T C, GUERRERO O, et al. Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations [J]. Physical Review B, 2013, 88(13): 134101. doi: 10.1103/PhysRevB.88.134101
    [21] LUO S N, GERMANN T C, TONKS D L. The effect of vacancies on dynamic response of single crystal Cu to shock waves [J]. Journal of Applied Physics, 2010, 107(5): 056102. doi: 10.1063/1.3326941
    [22] QIU T, XIONG Y, XIAO S, et al. Non-equilibrium molecular dynamics simulations of the spallation in Ni: effect of vacancies [J]. Computational Materials Science, 2017, 137: 273–281. doi: 10.1016/j.commatsci.2017.05.039
    [23] HAN W Z, AN Q, LUO S N, et al. Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries [J]. Physical Review B, 2012, 85(2): 024107.
    [24] AN Q, HAN W Z, LUO S N, et al. Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: deformation and spallation [J]. Journal of Applied Physics, 2012, 111(5): 053525.
    [25] WANG L, E J C, CAI Y, et al. Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction [J]. Journal of Applied Physics, 2015, 117(8): 084301. doi: 10.1063/1.4907672
    [26] JACOBSEN K W, SCHIØTZ J. Nanoscale plasticity [J]. Nature Materials, 2002, 1: 15. doi: 10.1038/nmat718
    [27] 马文. 冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究[D]. 长沙: 国防科技大学, 2011.
    [28] 唐志平. 冲击相变研究的现状与趋势 [J]. 高压物理学报, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003

    TANG Z P. Some topics in shock-induced phase transitions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003
    [29] BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. doi: 10.1063/1.1722359
    [30] BARKER L M, HOLLENBACH R E. Shock wave study of the αε phase transition in iron [J]. Journal of Applied Physics, 1974, 45(11): 4872–4887. doi: 10.1063/1.1663148
    [31] KALANTAR D H, BELAK J F, COLLINS G W, et al. Direct observation of the αε transition in shock-compressed iron via nanosecond X-ray diffraction [J]. Physical Review Letters, 2005, 95(7): 075502. doi: 10.1103/PhysRevLett.95.075502
    [32] YAAKOBI B, BOEHLY T R, MEYERHOFER D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks [J]. Physical Review Letters, 2005, 95(7): 075501. doi: 10.1103/PhysRevLett.95.075501
    [33] KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681. doi: 10.1126/science.1070375
    [34] 崔新林. 冲击波压缩下铁的结构相变及微观机理研究[D]. 北京: 中国矿业大学(北京), 2009.
    [35] CUI X, ZHU W, HE H, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PhysRevB.78.024115
    [36] SHAO J L, DUAN S Q, HE A M, et al. Microscopic dynamics of structural transition in iron with a nanovoid under shock loading [J]. Journal of Physics: Condensed Matter, 2010, 22(35): 355403. doi: 10.1088/0953-8984/22/35/355403
    [37] 邵建立, 何安民, 段素青, 等. 单轴应变驱动铁bcc–hcp相转变的微观模拟 [J]. 物理学报, 2010, 59(7): 4888–4894.

    SHAO J L, HE A M, DUAN S Q, et al. Atomistic simulation of the bcc–hcp transition in iron driven by uniaxial strain [J]. Acta Physica Sinica, 2010, 59(7): 4888–4894.
    [38] 邵建立. 金属动态相变与破坏现象的MD模拟[D]. 绵阳: 中国工程物理研究院, 2013.
    [39] HAWRELIAK J, COLVIN J D, EGGERT J H, et al. Analysis of the X-ray diffraction signal for the αϵ transition in shock-compressed iron: simulation and experiment [J]. Physical Review B, 2006, 74(18): 184107. doi: 10.1103/PhysRevB.74.184107
    [40] GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. doi: 10.1103/PhysRevB.86.144111
    [41] NINA G, DIEGO R T, EDUARDO M B, et al. Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron [J]. New Journal of Physics, 2014, 16(9): 093032. doi: 10.1088/1367-2630/16/9/093032
    [42] GUNKELMANN N, BRINGA E M, TRAMONTINA D R, et al. Shock waves in polycrystalline iron: plasticity and phase transitions [J]. Physical Review B, 2014, 89(14): 140102. doi: 10.1103/PhysRevB.89.140102
    [43] BOETTGER J C, WALLACE D C. Metastability and dynamics of the shock-induced phase transition in iron [J]. Physical Review B, 1997, 55(5): 2840. doi: 10.1103/PhysRevB.55.2840
    [44] SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
    [45] KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
    [46] HAWRELIAK J A, EL-DASHER B, LORENZANA H, et al. In situ x-ray diffraction measurements of the c/a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron [J]. Physical Review B, 2011, 83(14): 144114. doi: 10.1103/PhysRevB.83.144114
    [47] AMADOU N, DE RESSEGUIER T, DRAGON A, et al. Coupling between plasticity and phase transition in shock-and ramp-compressed single-crystal iron [J]. Physical Review B, 2018, 98(2): 024104. doi: 10.1103/PhysRevB.98.024104
    [48] BROWN D W, ALMER J D, BALOGH L, et al. Stability of the two-phase (α/ω) microstructure of shocked zirconium [J]. Acta Materialia, 2014, 67: 383–394. doi: 10.1016/j.actamat.2013.12.002
    [49] ZONG H, LOOKMAN T, DING X, et al. Anisotropic shock response of titanium: reorientation and transformation mechanisms [J]. Acta Materialia, 2014, 65: 10–18. doi: 10.1016/j.actamat.2013.11.047
    [50] ZONG H, LUO Y, DING X, et al. hcp→ω phase transition mechanisms in shocked zirconium: a machine learning based atomic simulation study [J]. Acta Materialia, 2019, 162: 126–135. doi: 10.1016/j.actamat.2018.09.067
    [51] SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47(11): 4814–4826. doi: 10.1063/1.322523
    [52] SEAMAN L, CURRAN D R, MURRI W J. A continuum model for dynamic tensile microfracture and fragmentation [J]. Journal of Applied Mechanics, 1985, 52(3): 593–600. doi: 10.1115/1.3169106
    [53] MOSHE E, ELIEZER S, DEKEL E, et al. An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s−1 [J]. Journal of Applied Physics, 1998, 83(8): 4004–4011. doi: 10.1063/1.367222
    [54] WANG Y, QI M, HE H, et al. Spall failure of aluminum materials with different microstructures [J]. Mechanics of Materials, 2014, 69(1): 270–279. doi: 10.1016/j.mechmat.2013.11.005
    [55] BELAK J. On the nucleation and growth of voids at high strain-rates [J]. Journal of Computer-Aided Materials Design, 1998, 5(2): 193–206.
    [56] SEPPÄLÄ E T, BELAK J, RUDD R E. Effect of stress triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study [J]. Physical Review B, 2004, 69(13): 134101. doi: 10.1103/PhysRevB.69.134101
    [57] SEPPÄLÄ E T, BELAK J, RUDD R E. Onset of void coalescence during dynamic fracture of ductile metals [J]. Physical Review Letters, 2004, 93(24): 245503. doi: 10.1103/PhysRevLett.93.245503
    [58] 邓小良, 祝文军, 贺红亮, 等. 沿晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2008, 21(1): 17–19.

    DENG X L, ZHU W J, HE H L, et al. Plasticity mechanism associated with nano-void growth under impact loading along <111> direction in copper [J]. Chinese Journal of High Pressure Physics, 2008, 21(1): 17–19.
    [59] ZHU W, SONG Z, DENG X, et al. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Physical Review B, 2007, 75(2): 024104. doi: 10.1103/PhysRevB.75.024104
    [60] 邓小良, 祝文军, 宋振飞, 等. 冲击加载下孔洞贯通的微观机理研究 [J]. 物理学报, 2016, 58(7): 4772–4778.

    DENG X L, ZHU W J, SONG Z F, et al. Microscopic mechanism of void coalescence under shock loading [J]. Acta Physica Sinica, 2016, 58(7): 4772–4778.
    [61] LIAO Y, XIANG M, ZENG X, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J]. Computational Materials Science, 2014, 95: 89–98. doi: 10.1016/j.commatsci.2014.07.014
    [62] AGARWAL G, DONGARE A M. Defect and damage evolution during spallation of single crystal Al: comparison between molecular dynamics and quasi-coarse-grained dynamics simulations [J]. Computational Materials Science, 2018, 145: 68–79. doi: 10.1016/j.commatsci.2017.12.032
    [63] XIANG M, HU H, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
    [64] XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
    [65] SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. doi: 10.1140/epjd/e2008-00212-2
    [66] 陈永涛, 任国武, 汤铁钢, 等. 熔化前后Pb样品表面微喷射现象研究 [J]. 物理学报, 2012, 61(20): 336–343.

    CHEN Y T, REN G W, TANG T G, et al. Ejecta on Pb surface below and above melting pressure [J]. Acta Physica Sinica, 2012, 61(20): 336–343.
    [67] CHEN Y, REN G, TANG T, et al. Experimental study of micro-spalling fragmentation from melted lead [J]. Shock Waves, 2016, 26(2): 221–225. doi: 10.1007/s00193-015-0601-4
    [68] MEYERS M A, AIMONE C T. Dynamic fracture (spalling) of metals [J]. Progress in Materials Science, 1983, 28(1): 1–96. doi: 10.1016/0079-6425(83)90003-8
    [69] GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [70] DEKEL E, ELIEZER S, HENIS Z, et al. Spallation model for the high strain rates range [J]. Journal of Applied Physics, 1998, 84(9): 4851–4858. doi: 10.1063/1.368727
    [71] HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta Materialia, 2018, 159: 241–248. doi: 10.1016/j.actamat.2018.07.073
    [72] HAHN E N, GERMANN T C, RAVELO R J, et al. Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum [J]. AIP Conference Proceedings, 2017, 1793(1): 070006.
    [73] CHENG M, LI C, TANG M X, et al. Intragranular void formation in shock-spalled tantalum: mechanisms and governing factors [J]. Acta Materialia, 2018, 148: 38–48. doi: 10.1016/j.actamat.2018.01.029
    [74] REMINGTON T P, HAHN E N, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
    [75] SRINIVASAN S G, BASKES M I, WAGNER G J. Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel [J]. Journal of Applied Physics, 2007, 101(4): 043504. doi: 10.1063/1.2423084
    [76] 辛建婷, 祝文军, 刘仓理. 飞秒激光辐照铝材料的分子动力学数值模拟 [J]. 爆炸与冲击, 2004, 24(3): 207–211.

    XIN J T, ZHU W J, LIU C L. Molecular dynamics simulation of radiation effects in Al foil irradiated by femtosecond laser beams [J]. Explosion and Shock Waves, 2004, 24(3): 207–211.
    [77] AMOUYE FOUMANI A, NIKNAM A R. Atomistic simulation of femtosecond laser pulse interactions with a copper film: effect of dependency of penetration depth and reflectivity on electron temperature [J]. Journal of Applied Physics, 2018, 123(4): 043106. doi: 10.1063/1.5009501
    [78] HATOMI D, OHNISHI N, NISHIKINO M. Molecular dynamics simulation of cluster formation in femtosecond laser ablation [C]//X-Ray Lasers and Coherent X-Ray Sources: Development and Applications X. International Society for Optics and Photonics, 2013, 8849: 884918.
    [79] WU C, ZHIGILEI L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations [J]. Applied Physics A, 2013, 114(1): 11–32.
    [80] WU C, CHRISTENSEN M S, SAVOLAINEN J M, et al. Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target [J]. Physical Review B, 2015, 91(3): 035413. doi: 10.1103/PhysRevB.91.035413
    [81] WU C, ZHIGILEI L V. Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse [J]. The Journal of Physical Chemistry C, 2016, 120(8): 4438–4447. doi: 10.1021/acs.jpcc.6b00013
    [82] ABOU-SALEH A, KARIM E T, MAURICE C, et al. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr [J]. Applied Physics A, 2018, 124(4): 308. doi: 10.1007/s00339-018-1716-0
    [83] CUQ-LELANDAIS J P, BOUSTIE M, SOULARD L, et al. Comparison between experiments and molecular dynamic simulations of spallation induced by ultra-short laser shock on micrometric tantalum targets [J]. AIP Conference Proceedings, 2009, 1195(1): 829–832.
    [84] LEVEUGLE E, IVANOV D S, ZHIGILEI L V. Photomechanical spallation of molecular and metal targets: molecular dynamics study [J]. Applied Physics A, 2004, 79(7): 1643–1655. doi: 10.1007/s00339-004-2682-2
    [85] ZHIGILEI L V. Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation [J]. Applied Physics A, 2003, 76(3): 339–350. doi: 10.1007/s00339-002-1818-5
    [86] SIGNOR L, DE RESSÉGUIER T, ROY G, et al. Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues [J]. AIP Conference Proceedings, 2007, 955(1): 593–596.
    [87] KARIM E T, LIN Z, ZHIGILEI L V. Molecular dynamics study of femtosecond laser interactions with Cr targets [J]. AIP Conference Proceedings, 2012, 1464(1): 280–293.
    [88] LORAZO P, LEWIS L J, MEUNIER M. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation [J]. Physical Review B, 2006, 73(13): 134108. doi: 10.1103/PhysRevB.73.134108
    [89] JARAMILLO-BOTERO A, SU J, QI A, et al. Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments [J]. Journal of Computational Chemistry, 2011, 32(3): 497–512. doi: 10.1002/jcc.21637
    [90] KADAU K, GERMANN T C, LOMDAHL P S. Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L [J]. International Journal of Modern Physics C, 2006, 17(12): 1755–1761. doi: 10.1142/S0129183106010182
    [91] GERMANN T C, KADAU K. Trillion-atom molecular dynamics becomes a reality [J]. International Journal of Modern Physics C, 2008, 19(9): 1315–1319. doi: 10.1142/S0129183108012911
    [92] TONG Q, LI S. Multiscale coupling of molecular dynamics and peridynamics [J]. Journal of the Mechanics and Physics of Solids, 2016, 95: 169–187. doi: 10.1016/j.jmps.2016.05.032
    [93] LEE Y, BASARAN C. A multiscale modeling technique for bridging molecular dynamics with finite element method [J]. Journal of Computational Physics, 2013, 253: 64–85. doi: 10.1016/j.jcp.2013.06.039
    [94] BOSTEDT C, BOUTET S, FRITZ D M, et al. Linac coherent light source: the first five years [J]. Reviews of Modern Physics, 2016, 88(1): 015007. doi: 10.1103/RevModPhys.88.015007
  • 加载中
图(10)
计量
  • 文章访问数:  15163
  • HTML全文浏览量:  3585
  • PDF下载量:  138
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-04-28

目录

    /

    返回文章
    返回