含时密度泛函理论及应用的最新发展

覃睿

覃睿. 含时密度泛函理论及应用的最新发展[J]. 高压物理学报, 2019, 33(3): 030101. doi: 10.11858/gywlxb.20190747
引用本文: 覃睿. 含时密度泛函理论及应用的最新发展[J]. 高压物理学报, 2019, 33(3): 030101. doi: 10.11858/gywlxb.20190747
QIN Rui. New Developments of Time-Dependent Density Functional Theory and Its Applications[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030101. doi: 10.11858/gywlxb.20190747
Citation: QIN Rui. New Developments of Time-Dependent Density Functional Theory and Its Applications[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030101. doi: 10.11858/gywlxb.20190747

含时密度泛函理论及应用的最新发展

doi: 10.11858/gywlxb.20190747
详细信息
    作者简介:

    覃 睿(1982-),男,博士,副研究员,主要从事计算材料研究. E-mail:qinrui@caep.cn

  • 中图分类号: O521.2

New Developments of Time-Dependent Density Functional Theory and Its Applications

  • 摘要: 密度泛函理论在材料计算研究领域得到了广泛的应用,然而它无法处理含时问题和材料的激发态性质。Runge-Gross定理奠定了含时密度泛函理论的基础,为研究这两类问题提供了有效的手段。经过三十多年的发展,含时密度泛函已被应用到量子化学、材料计算等多个领域,人们也更加了解其优势和不足。目前,含时密度泛函理论和方法仍在迅速发展。本文简要回顾含时密度泛函方法的发展历史,介绍近年来含时密度泛函在理论和应用方面的一些重要进展,总结当前在含时密度泛函领域存在的重要难题以及面临的挑战,展望其发展方向和趋势。

     

  • 图  对CO2分子的TDDFT研究(上图为偶极矩随时间演化,下图为通过傅里叶变换得到的谱(实线)与通过线性响应得到的谱(虚线)的比较)[23]

    Figure  1.  TDDFT calculation for the CO2 molecule (Top: time-dependent dipole moment. Bottom: dipole spectrum (full line) by Fourier transformation of dipole moment, compared with spectrum from LR-TDDFT (thin line).)[23]

    图  乙炔在17.5 eV激光脉冲激发下的含时电子局域函数(TDELF)变化的快照[28]

    Figure  2.  Snapshots of the time-dependent electron localization function (TDELF) for the excitation of acetylene by a 17.5 eV laser pulse[28]

    图  偶极近似破坏了晶体哈密顿量的空间周期性

    Figure  3.  Spatial periodicity of the Hamiltonian destroyed by the dipole approximation

    图  块材硅的光吸收谱的RPA、TDDFT-ALDA计算和实验对比[73]

    Figure  4.  Optical absorption spectrum of bulk Si: RPA, TDDFT-ALDA calculations and experiment[73]

    图  采用bootstrap交换关联核的TDDFT计算各类半导体块材的光吸收谱及其与RPA计算、实验结果的对比[74]

    Figure  5.  Optical absorption spectra of various bulk semiconductors calculated with TDDFT using the bootstrap xc kernel compared with the RPA calculations and experiments[74]

    图  沿${\varGamma X}$${\varGamma L}$方向的块材硅的高次谐波谱以及对应的联合态密度(JDOS) [76]

    Figure  6.  High harmonic spectra for the ${\varGamma X}$ polarization direction (red line) and the ${\varGamma L}$ direction (blue line); the bottom panel shows the corresponding joint density of states (JDOS) [76]

    图  计算得到的价电子动态结构因子与Sperling实验测量谱的对比[7879]

    Figure  7.  Calculated dynamic structure factor of valence electrons compared with the measured spectrum of Sperling et al. [7879]

    表  1  一些气相Ar-TCNE体系的激发能E(单位eV)和振动强度f的计算和实验对比[57]

    Table  1.   Excitation energies E (eV) and oscillator strengths f of several gas phase Ar-TCNE systems: theory and experiment[57]

    Ar B3LYP BNL ($\gamma $=0.5) BNL $\gamma^* $ Exp.[27]
    E f E $\gamma^* $ E f E f
    Benzene 2.1 0.03 4.4 0.33 3.8 0.03 3.59 0.02
    Toluene 1.8 0.04 4.0 0.32 3.4 0.03 3.36 0.03
    O-xylene 1.5 0 3.7 0.31 3.0 0.01 3.15 0.05
    Naphthalene 0.9 0 3.3 0.32 2.7 0 2.60 0.01
    下载: 导出CSV
  • [1] DIRAC P A M. Quantum mechanics of many-electron systems [J]. Proceedings of the Royal Society of London Series A, 1929, 123(792): 714–733. doi: 10.1098/rspa.1929.0094
    [2] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
    [3] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [4] BLOCH F. Bremsvermögen von Atomen mit mehreren Elektronen [J]. Zeitschrift für Physik A Hadrons and Nuclei, 1933, 81(5): 363–376.
    [5] PEUCKERT V. A new approximation method for electron systems [J]. Journal of Physics C: Solid State Physics, 1978, 11(24): 4945–4956. doi: 10.1088/0022-3719/11/24/023
    [6] ZANGWILL A, SOVEN P. Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases [J]. Physical Review A, 1980, 21(5): 1561. doi: 10.1103/PhysRevA.21.1561
    [7] DEB B M, GHOSH S K. Schrödinger fluid dynamics of many-electron systems in a time-dependent density-functional framework [J]. The Journal of Chemical Physics, 1982, 77(1): 342–348. doi: 10.1063/1.443611
    [8] GHOSH S K, DEB B M. Dynamic polarizability of many-electron systems within a time-dependent density-functional theory [J]. Chemical Physics, 1982, 71(2): 295–306. doi: 10.1016/0301-0104(82)87030-4
    [9] GHOSH S K, DEB B M. A density-functional calculation of dynamic dipole polarizabilities of noble gas atoms [J]. Theoretica Chimica Acta, 1983, 62(3): 209–217. doi: 10.1007/BF00548835
    [10] GHOSH S K, DEB B M. A simple density-functional calculation of frequency-dependent multipole polarizabilities of noble gas atoms [J]. Journal of Molecular Structure: THEOCHEM, 1983, 103: 163–176. doi: 10.1016/0166-1280(83)85017-9
    [11] BARTOLOTTI L J. Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional [J]. Physical Review A, 1981, 24(4): 1661–1667. doi: 10.1103/PhysRevA.24.1661
    [12] BARTOLOTTI L J. Time-dependent Kohn-Sham density-functional theory [J]. Physical Review A, 1982, 26(4): 2243–2244. doi: 10.1103/PhysRevA.26.2243
    [13] BARTOLOTTI L J. Variation-perturbation theory within a time-dependent Kohn-Sham formalism: an application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients [J]. The Journal of Chemical Physics, 1984, 80(11): 5687–5695. doi: 10.1063/1.446637
    [14] BARTOLOTTI L J. Velocity form of the Kohn-Sham frequency-dependent polarizability equations [J]. Physical Review A, 1987, 36(9): 4492–4493. doi: 10.1103/PhysRevA.36.4492
    [15] RUNGE E, GROSS E K U. Density-functional theory for time-dependent systems [J]. Physical Review Letters, 1984, 52(12): 997–1000. doi: 10.1103/PhysRevLett.52.997
    [16] LEVY M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem [J]. Proceedings of the National Academy of Sciences, 1979, 76(12): 6062–6065. doi: 10.1073/pnas.76.12.6062
    [17] LIEB E H. Density functionals for Coulomb systems [J]. International Journal of Quantum Chemistry, 1983, 24: 243–277. doi: 10.1002/(ISSN)1097-461X
    [18] VAN LEEUWEN R. Mapping from densities to potentials in time-dependent density-functional theory [J]. Physical Review Letters, 1999, 82(19): 3863–3866. doi: 10.1103/PhysRevLett.82.3863
    [19] RUGGENTHALER M, GIESBERTZ K J H, PENZ M, et al. Density-potential mappings in quantum dynamics [J]. Physical Review A, 2012, 85(5): 052504. doi: 10.1103/PhysRevA.85.052504
    [20] RUGGENTHALER M, VAN LEEUWEN R. Global fixed-point proof of time-dependent density-functional theory [J]. EPL (Europhysics Letters), 2011, 95(1): 13001. doi: 10.1209/0295-5075/95/13001
    [21] ULLRICH C A. Time-dependent density-functional theory: concepts and applications [M]. OUP Oxford, 2011.
    [22] GIULIANI G, VIGNALE G. Quantum theory of the electron liquid [M]. Cambridge: Cambridge University Press, 2005.
    [23] ULLRICH C A, YANG Z. A brief compendium of time-dependent density functional theory [J]. Brazilian Journal of Physics, 2014, 44(1): 154–188. doi: 10.1007/s13538-013-0141-2
    [24] GROSS E K U, KOHN W. Local density-functional theory of frequency-dependent linear response [J]. Physical Review Letters, 1985, 55(26): 2850–2852. doi: 10.1103/PhysRevLett.55.2850
    [25] CASIDA M E. Time-dependent density functional response theory for molecules [M]//Recent Advances in Computational Chemistry. World Scientific, 1995: 155–192.
    [26] HIRATA S, HEAD-GORDON M. Time-dependent density functional theory within the Tamm-Dancoff approximation [J]. Chemical Physics Letters, 1999, 314(3/4): 291–299.
    [27] CASTRO A, MARQUES M A L, RUBIO A. Propagators for the time-dependent Kohn-Sham equations [J]. The Journal of Chemical Physics, 2004, 121(8): 3425–3433. doi: 10.1063/1.1774980
    [28] BURNUS T, MARQUES M A L, GROSS E K U. Time-dependent electron localization function [J]. Physical Review A, 2005, 71(1): 010501. doi: 10.1103/PhysRevA.71.010501
    [29] POHL A, REINHARD P G, SURAUD E. Towards single-particle spectroscopy of small metal clusters [J]. Physical Review Letters, 2000, 84(22): 5090–5093. doi: 10.1103/PhysRevLett.84.5090
    [30] VÉNIARD V, TAIEB R, MAQUET A. Photoionization of atoms using time-dependent density functional theory [J]. Laser Physics, 2003, 13(4): 465–474.
    [31] DE GIOVANNINI U, VARSANO D, MARQUES M A L, et al. Ab initio angle-and energy-resolved photoelectron spectroscopy with time-dependent density-functional theory [J]. Physical Review A, 2012, 85(6): 062515. doi: 10.1103/PhysRevA.85.062515
    [32] ROHRINGER N, PETER S, BURGDÖRFER J. Calculating state-to-state transition probabilities within time-dependent density-functional theory [J]. Physical Review A, 2006, 74(4): 042512. doi: 10.1103/PhysRevA.74.042512
    [33] LI Y, ULLRICH C A. Time-dependent transition density matrix [J]. Chemical Physics, 2011, 391(1): 157–163. doi: 10.1016/j.chemphys.2011.02.001
    [34] D’AGOSTA R, VIGNALE G. Non-V-representability of currents in time-dependent many-particle systems [J]. Physical Review B, 2005, 71(24): 245103. doi: 10.1103/PhysRevB.71.245103
    [35] VIGNALE G. Mapping from current densities to vector potentials in time-dependent current density functional theory [J]. Physical Review B, 2004, 70(20): 201102. doi: 10.1103/PhysRevB.70.201102
    [36] VIGNALE G, KOHN W. Current-dependent exchange-correlation potential for dynamical linear response theory [J]. Physical Review Letters, 1996, 77(10): 2037–2040. doi: 10.1103/PhysRevLett.77.2037
    [37] VIGNALE G, ULLRICH C A, CONTI S. Time-dependent density functional theory beyond the adiabatic local density approximation [J]. Physical Review Letters, 1997, 79(24): 4878–4881. doi: 10.1103/PhysRevLett.79.4878
    [38] MAITRA N T, SOUZA I, BURKE K. Current-density functional theory of the response of solids [J]. Physical Review B, 2003, 68(4): 045109. doi: 10.1103/PhysRevB.68.045109
    [39] YABANA K, BERTSCH G F. Time-dependent local-density approximation in real time [J]. Physical Review B, 1996, 54(7): 4484–4487.
    [40] BERTSCH G F, IWATA J I, RUBIO A, et al. Real-space, real-time method for the dielectric function [J]. Physical Review B, 2000, 62(12): 7998–8002.
    [41] YABANA K, SUGIYAMA T, SHINOHARA Y, et al. Time-dependent density functional theory for strong electromagnetic fields in crystalline solids [J]. Physical Review B, 2012, 85(4): 045134.
    [42] MARQUES M A L, CASTRO A, BERTSCH G F, et al. Octopus: a first-principles tool for excited electron–ion dynamics [J]. Computer Physics Communications, 2003, 151(1): 60–78.
    [43] CASTRO A, APPEL H, OLIVEIRA M, et al. Octopus: a tool for the application of time-dependent density functional theory [J]. Physica Status Solidi (B), 2006, 243(11): 2465–2488.
    [44] ANDRADE X, STRUBBE D, DE GIOVANNINI U, et al. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems [J]. Physical Chemistry Chemical Physics, 2015, 17(47): 31371–31396.
    [45] DREUW A, HEAD-GORDON M. Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes [J]. Journal of the American Chemical Society, 2004, 126(12): 4007–4016. doi: 10.1021/ja039556n
    [46] HIERINGER W, GÖRLING A. Failure of time-dependent density functional methods for excitations in spatially separated systems [J]. Chemical Physics Letters, 2006, 419(4/5/6): 557–562.
    [47] AUTSCHBACH J. Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions [J]. ChemPhysChem, 2009, 10(11): 1757–1760. doi: 10.1002/cphc.v10:11
    [48] CASIDA M E, GUTIERREZ F, GUAN J, et al. Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: analysis within the two-level model with illustration for H2 and LiH [J]. The Journal of Chemical Physics, 2000, 113(17): 7062–7071. doi: 10.1063/1.1313558
    [49] HU C, SUGINO O, MIYAMOTO Y. Modified linear response for time-dependent density-functional theory: application to Rydberg and charge-transfer excitations [J]. Physical Review A, 2006, 74(3): 032508. doi: 10.1103/PhysRevA.74.032508
    [50] HU C, SUGIN O. Average excitation energies from time-dependent density functional response theory [J]. Journal of Chemical Physics, 2007, 126: 074112. doi: 10.1063/1.2436887
    [51] TAWADA Y, TSUNEDA T, YANAGISAWA S, et al. A long-range-corrected time-dependent density functional theory [J]. The Journal of Chemical Physics, 2004, 120(18): 8425–8433. doi: 10.1063/1.1688752
    [52] TOKURA S, TSUNEDA T, HIRAO K. Long-range-corrected time-dependent density functional study on electronic spectra of five-membered ring compounds and free-base porphyrin [J]. Journal of Theoretical and Computational Chemistry, 2006, 5(4): 925–944. doi: 10.1142/S0219633606002684
    [53] VYDROV O A, SCUSERIA G E. Assessment of a long-range corrected hybrid functional [J]. The Journal of Chemical Physics, 2006, 125(23): 234109. doi: 10.1063/1.2409292
    [54] LIVSHITS E, BAER R. A well-tempered density functional theory of electrons in molecules [J]. Physical Chemistry Chemical Physics, 2007, 9(23): 2932–2941. doi: 10.1039/b617919c
    [55] PEACH M J G, TELLGREN E I, SAŁEK P, et al. Structural and electronic properties of polyacetylene and polyyne from hybrid and coulomb-attenuated density functionals [J]. The Journal of Physical Chemistry A, 2007, 111(46): 11930–11935. doi: 10.1021/jp0754839
    [56] LIVSHITS E, BAER R. A density functional theory for symmetric radical cations from bonding to dissociation [J]. The Journal of Physical Chemistry A, 2008, 112(50): 12789–12791. doi: 10.1021/jp803606n
    [57] STEIN T, KRONIK L, BAER R. Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory [J]. Journal of the American Chemical Society, 2009, 131(8): 2818–2820. doi: 10.1021/ja8087482
    [58] MAITRA N T, ZHANG F, CAVE R J, et al. Double excitations within time-dependent density functional theory linear response [J]. The Journal of Chemical Physics, 2004, 120(13): 5932–5937. doi: 10.1063/1.1651060
    [59] GRITSENKO O V, BAERENDS E J. Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange–correlation kernel in the common energy denominator approximation [J]. Physical Chemistry Chemical Physics, 2009, 11(22): 4640–4646. doi: 10.1039/b903123e
    [60] ROMANIELLO P, SANGALLI D, BERGER J A, et al. Double excitations in finite systems [J]. The Journal of Chemical Physics, 2009, 130(4): 044108. doi: 10.1063/1.3065669
    [61] SANGALLI D, ROMANIELLO P, ONIDA G, et al. Double excitations in correlated systems: a many–body approach [J]. The Journal of Chemical Physics, 2011, 134(3): 034115. doi: 10.1063/1.3518705
    [62] SÄKKINEN N, MANNINEN M, VAN LEEUWEN R. The Kadanoff–Baym approach to double excitations in finite systems [J]. New Journal of Physics, 2012, 14(1): 013032. doi: 10.1088/1367-2630/14/1/013032
    [63] HUIX-ROTLLANT M, IPATOV A, RUBIO A, et al. Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores [J]. Chemical Physics, 2011, 391(1): 120–129. doi: 10.1016/j.chemphys.2011.03.019
    [64] FURCHE F, AHLRICHS R. Absolute configuration of D2-symmetric fullerene C84 [J]. Journal of the American Chemical Society, 2002, 124(15): 3804–3805. doi: 10.1021/ja012207d
    [65] LIU J, LIANG W Z. Molecular-orbital-free algorithm for the excited-state force in time-dependent density functional theory [J]. The Journal of Chemical Physics, 2011, 134(4): 044114. doi: 10.1063/1.3548063
    [66] LEVINE B G, KO C, QUENNEVILLE J, et al. Conical intersections and double excitations in time-dependent density functional theory [J]. Molecular Physics, 2006, 104(5/6/7): 1039–1051.
    [67] TAPAVICZA E, TAVERNELLI I, ROTHLISBERGER U, et al. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry [J]. The Journal of Chemical Physics, 2008, 129(12): 124108. doi: 10.1063/1.2978380
    [68] KADUK B, VAN VOORHIS T. Communication: conical intersections using constrained density functional theory–configuration interaction [J]. Journal of Chemical Physics, 2010, 133: 061102. doi: 10.1063/1.3470106
    [69] MAITRA N T. On correlated electron-nuclear dynamics using time-dependent density functional theory [J]. The Journal of Chemical Physics, 2006, 125(1): 014110. doi: 10.1063/1.2210471
    [70] GONZE X, GHOSEZ P, GODBY R W. Density-polarization functional theory of the response of a periodic insulating solid to an electric field [J]. Physical Review Letters, 1995, 74(20): 4035. doi: 10.1103/PhysRevLett.74.4035
    [71] GHOSEZ P, GONZE X, GODBY R W. Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems [J]. Physical Review B, 1997, 56(20): 12811–12817. doi: 10.1103/PhysRevB.56.12811
    [72] ONIDA G, REINING L, RUBIO A. Electronic excitations: density-functional versus many-body Green’s-function approaches [J]. Reviews of Modern Physics, 2002, 74(2): 601–659. doi: 10.1103/RevModPhys.74.601
    [73] BOTTI S, SOTTILE F, VAST N, et al. Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory [J]. Physical Review B, 2004, 69(15): 155112. doi: 10.1103/PhysRevB.69.155112
    [74] SHARMA S, DEWHURST J K, SANNA A, et al. Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory [J]. Physical Review Letters, 2011, 107(18): 186401. doi: 10.1103/PhysRevLett.107.186401
    [75] SHARMA S, DEWHURST J K, SANNA A, et al. Enhanced excitonic effects in the energy loss spectra of LiF and Ar at large momentum transfer [J]. New Journal of Physics, 2012, 14(5): 053052. doi: 10.1088/1367-2630/14/5/053052
    [76] TANCOGNE-DEJEAN N, MÜCKE O D, KÄRTNER F X, et al. Impact of the electronic band structure in high-harmonic generation spectra of solids [J]. Physical Review Letters, 2017, 118(8): 087403. doi: 10.1103/PhysRevLett.118.087403
    [77] BACZEWSKI A D, SHULENBURGER L, DESJARLAIS M P, et al. X-ray thomson scattering in warm dense matter without the chihara decomposition [J]. Physical Review Letters, 2016, 116(11): 115004. doi: 10.1103/PhysRevLett.116.115004
    [78] MO C, FU Z, KANG W, et al. First-principles estimation of electronic temperature from X-ray thomson scattering spectrum of isochorically heated warm dense matter [J]. Physical Review Letters, 2018, 120(20): 205002. doi: 10.1103/PhysRevLett.120.205002
    [79] SPERLING P, GAMBOA E J, LEE H J, et al. Free-electron X-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter [J]. Physical Review Letters, 2015, 115(11): 115001. doi: 10.1103/PhysRevLett.115.115001
    [80] RAMAKRISHNAN R, HARTMANN M, TAPAVICZA E, et al. Electronic spectra from TDDFT and machine learning in chemical space [J]. The Journal of Chemical Physics, 2015, 143(8): 084111. doi: 10.1063/1.4928757
    [81] FUKS J I, NIELSEN S E B, RUGGENTHALER M, et al. Time-dependent density functional theory beyond Kohn–Sham Slater determinants [J]. Physical Chemistry Chemical Physics, 2016, 18(31): 20976–20985. doi: 10.1039/C6CP00722H
    [82] NIELSEN S E B, RUGGENTHALER M, VAN LEEUWEN R. Many-body quantum dynamics from the density [J]. EPL (Europhysics Letters), 2013, 101(3): 33001. doi: 10.1209/0295-5075/101/33001
    [83] ELLIOTT P, MAITRA N T. Propagation of initially excited states in time-dependent density-functional theory [J]. Physical Review A, 2012, 85(5): 052510. doi: 10.1103/PhysRevA.85.052510
    [84] CASTRO A, MARQUES M A L, ALONSO J A, et al. Excited states dynamics in time-dependent density functional theory [J]. The European Physical Journal D, 2004, 28(2): 211–218. doi: 10.1140/epjd/e2003-00306-3
    [85] ALONSO J L, ANDRADE X, ECHENIQUE P, et al. Efficient formalism for large-scale ab initio molecular dynamics based on time-dependent density functional theory [J]. Physical Review Letters, 2008, 101(9): 096403. doi: 10.1103/PhysRevLett.101.096403
    [86] MENG S, KAXIRAS E. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations [J]. The Journal of Chemical Physics, 2008, 129(5): 054110. doi: 10.1063/1.2960628
    [87] MENG S, KAXIRAS E. Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents [J]. Biophysical Journal, 2008, 95(9): 4396–4402. doi: 10.1529/biophysj.108.135756
    [88] TULLY J C. Molecular dynamics with electronic transitions [J]. The Journal of Chemical Physics, 1990, 93(2): 1061–1071. doi: 10.1063/1.459170
    [89] TAPAVICZA E, TAVERNELLI I, ROTHLISBERGER U. Trajectory surface hopping within linear response time-dependent density-functional theory [J]. Physical Review Letters, 2007, 98(2): 023001. doi: 10.1103/PhysRevLett.98.023001
    [90] TAVERNELLI I, CURCHOD B F E, ROTHLISBERGER U. Mixed quantum-classical dynamics with time-dependent external fields: a time-dependent density-functional-theory approach [J]. Physical Review A, 2010, 81(5): 052508. doi: 10.1103/PhysRevA.81.052508
    [91] KRISHTAL A, CERESOLI D, PAVANELLO M. Subsystem real-time time dependent density functional theory [J]. The Journal of Chemical Physics, 2015, 142(15): 154116. doi: 10.1063/1.4918276
    [92] PAVANELLO M. On the subsystem formulation of linear-response time-dependent DFT [J]. The Journal of Chemical Physics, 2013, 138(20): 204118. doi: 10.1063/1.4807059
    [93] NEUGEBAUER J. Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory [J]. The Journal of Chemical Physics, 2007, 126(13): 134116. doi: 10.1063/1.2713754
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  10410
  • HTML全文浏览量:  4093
  • PDF下载量:  127
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-04-22

目录

    /

    返回文章
    返回