铝氧比对含铝炸药水下爆炸载荷及能量输出结构的影响

田俊宏 孙远翔 张之凡

田俊宏, 孙远翔, 张之凡. 铝氧比对含铝炸药水下爆炸载荷及能量输出结构的影响[J]. 高压物理学报, 2019, 33(6): 065101. doi: 10.11858/gywlxb.20190745
引用本文: 田俊宏, 孙远翔, 张之凡. 铝氧比对含铝炸药水下爆炸载荷及能量输出结构的影响[J]. 高压物理学报, 2019, 33(6): 065101. doi: 10.11858/gywlxb.20190745
TIAN Junhong, SUN Yuanxiang, ZHANG Zhifan. Effect of Al/O Ratio on Underwater Explosion Load and Energy Output Configuration of Aluminized Explosive[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065101. doi: 10.11858/gywlxb.20190745
Citation: TIAN Junhong, SUN Yuanxiang, ZHANG Zhifan. Effect of Al/O Ratio on Underwater Explosion Load and Energy Output Configuration of Aluminized Explosive[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065101. doi: 10.11858/gywlxb.20190745

铝氧比对含铝炸药水下爆炸载荷及能量输出结构的影响

doi: 10.11858/gywlxb.20190745
基金项目: 爆炸科学与技术国家重点实验室(北京理工大学)自主研究课题探索性项目(YBKT17-08);中国博士后科学基金(2017M620644)
详细信息
    作者简介:

    田俊宏(1992-),男,硕士研究生,主要从事水下爆炸研究. E-mail: junhong_tian@163.com

    通讯作者:

    孙远翔(1967-),男,博士,副教授,主要从事水下爆炸研究. E-mail: sunyuanxiang002@126.com

  • 中图分类号: O383

Effect of Al/O Ratio on Underwater Explosion Load and Energy Output Configuration of Aluminized Explosive

  • 摘要: 为了系统地研究铝氧比对含铝炸药水下爆炸载荷及能量输出结构的影响,在验证数值模型有效性的基础上,针对铝氧比分别为0、0.16、0.36、0.63的RDX基含铝炸药,利用耦合欧拉-拉格朗日方法模拟了其水下爆炸连续的全过程,考虑了冲击波载荷和气泡载荷之间的耦合作用,从冲击波、气泡和能量输出结构三方面对影响效应进行评估。计算结果表明:随着铝氧比的增大,含铝炸药水下爆炸冲击波衰减时间常数、冲击波冲量、气泡脉动周期、气泡最大半径以及比气泡能都增大;铝氧比为0.36时,冲击波峰值压力、冲击波能流密度和比冲击波能达到最大。铝粉的加入对气泡能的提高相对于冲击波能更加显著。

     

  • 图  不同时刻冲击波传播压力云图

    Figure  1.  Shock wave pressure nephogram at different times

    图  不同比例距离处压力时程曲线

    Figure  2.  Pressure time history at different distances

    图  冲击波压力峰值对比

    Figure  3.  Comparison of shock wave peak pressure

    图  比冲击波能对比

    Figure  5.  Comparison of specific shock wave energy

    图  冲击波冲量对比

    Figure  4.  Comparison of shock wave impulse

    图  RS211炸药水下爆炸气泡脉动过程示意图

    Figure  6.  Bubble impulse caused by underwater explosion of RS211

    图  不同时刻冲击波压力云图

    Figure  7.  Shock wave pressure nephogram at different times

    图  不同爆距处冲击波压力时程曲线

    Figure  8.  Pressure time history at different distances

    图  铝氧比对峰值压力的影响

    Figure  9.  Effect of Al/O ratio on peak pressure

    图  12  铝氧比对能流密度的影响

    Figure  12.  Effect of Al/O ratio on energy flow density

    图  10  铝氧比对衰减常数的影响

    Figure  10.  Effect of Al/O ratio on attenuation constant

    图  11  铝氧比对冲击波冲量的影响

    Figure  11.  Effect of Al/O ratio on shock wave impulse

    图  13  气泡半径时程曲线

    Figure  13.  Time history of bubble radius

    图  14  铝氧比对气泡载荷的影响

    Figure  14.  Effect of Al/O ratio on bubble load

    图  15  铝氧比对比冲击波能的影响

    Figure  15.  Effect of Al/O ratio on specific shock wave energy

    图  16  铝氧比与能量构成之间的关系(R/a=28.68)

    Figure  16.  Relation of Al/O ratio with energy(R/a=28.68)

    表  1  炸药材料参数[1112]

    Table  1.   Explosive material parameters[1112]

    Sample$\rho $/(kg·m–3)A/GPaB/GPaR1R2ωe/(J·g–1)
    TNT1 630371.20 3.214.150.950.304 290
    RS2111 750758.00 8.514.901.100.204 509
    1(0)1 667334.77 9.506.711.260.215 636
    2(0.16)1 720361.5527.424.811.890.326 206
    3(0.36)1 788709.6020.275.371.900.346 956
    4(0.63)1 853761.51 9.165.451.740.237 441
    下载: 导出CSV

    表  2  气泡周期和比气泡能的对比

    Table  2.   Comparison of bubble period and specific bubble energy

    ExplosiveTb/msEb/MJeb/(MJ·kg–1)eb/eb, TNT
    Exp.Cal.Exp.Cal.Exp.Cal.Exp.Cal.
    RS211273.33266.899.441 78.789 93.059 52.846 51.521.48
    TNT235.99232.566.097 25.815 62.017 21.928 91.001.00
    下载: 导出CSV

    表  3  RDX基含铝炸药组分[15]

    Table  3.   Composition of RDX/Al explosives[15]

    Explosive$\rho /({\rm{kg}} \cdot {{\rm{m}}^{{\rm{ - }}3}})$Mass fraction/%Al/O ratio
    RDXAlWaxC
    1 1 667 95.5 0 2 2.5 0
    2 1 720 85.5 10 2 2.5 0.16
    3 1 788 75.5 20 2 2.5 0.36
    4 1 853 65.5 30 2 2.5 0.63
    下载: 导出CSV
  • [1] 陈朗, 龙新平, 冯长根, 等. 含铝炸药爆轰[M]. 北京: 国防工业出版社, 2004: 1–3.

    CHEN L, LONG X P, FENG C G, et al. Detonation of aluminized explosives [M]. Beijing: National Defense Industry Press, 2004: 1–3.
    [2] 周霖, 徐少辉, 徐更光. 炸药水下爆炸能量输出特性研究 [J]. 兵工学报, 2006(2): 235–238. doi: 10.3321/j.issn:1000-1093.2006.02.011

    ZHOU L, XU S H, XU G G. Research on energy output characteristics for underwater explosion of explosives [J]. Acta Armamentarii, 2006(2): 235–238. doi: 10.3321/j.issn:1000-1093.2006.02.011
    [3] 赵继波, 李金河, 谭多望, 等. 铝氧比对水中爆炸近场冲击波的影响 [J]. 含能材料, 2009, 17(4): 420–423. doi: 10.3969/j.issn.1006-9941.2009.04.011

    ZHAO J B, LI J H, TAN D W, et al. Effects of ratios of aluminum to oxygen on shock wave of cylindrical charge at underwater explosive close-field [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 420–423. doi: 10.3969/j.issn.1006-9941.2009.04.011
    [4] 赵倩, 聂建新, 王秋实, 等. 含铝炸药水下爆炸及其对舰船毁伤的数值模拟 [J]. 兵工学报, 2017, 38(2): 298–304. doi: 10.3969/j.issn.1000-1093.2017.02.013

    ZHAO Q, NIE J X, WANG Q S, et al. Numerical simulation on underwater explosion of aluminized explosives and its damage to ship [J]. Acta Armamentarii, 2017, 38(2): 298–304. doi: 10.3969/j.issn.1000-1093.2017.02.013
    [5] 门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京: 北京理工大学出版社, 2015: 99–101.

    MEN J B, JIANG J W, WANG S Y. Fundamentals of numerical simulation for explosion and shock problems [M]. Beijing: Beijing Institute of Technology Press, 2015: 99–101.
    [6] NOH W F. CEL: a time-dependent two-space-dimensional coupled Eulerian-Lagrange code [M]// ALDER B, FERNBACH S, ROTENBERG M, et al. Methods in Computational Physics: Volume 3. New York: Academic Press, 1964: 117–179.
    [7] BENSON D J, OKAZAWA S. Contact in a muti-material Eulerian finite element formulation [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39): 4277–4298.
    [8] 李烨. 近场水下爆炸载荷及其对舰船局部结构毁伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    LI Y. Research on near field underwater explosion loads and local structure damage of vessels [D]. Harbin: Harbin Engineering University, 2016.
    [9] HIBBITT H, KARLSSON B, SORENSEN P. Abaqus analysis user’s manual version 6.10 [M]. Providence, RI, USA: Dassault Systèmes Simulia Corp., 2011.
    [10] JACOBS S J. On the equation of state for detonation products at high density [C]//12th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1969.
    [11] 项大林, 荣吉利, 李健, 等. 基于KHT程序的RDX基含铝炸药JWL状态方程参数预测研究 [J]. 北京理工大学学报, 2013, 33(3): 239–243. doi: 10.3969/j.issn.1001-0645.2013.03.005

    XIANG D L, RONG J L, LI J, et al. JWL equation of state parameters prediction of RDX-based aluminized explosive based on KHT code [J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 239–243. doi: 10.3969/j.issn.1001-0645.2013.03.005
    [12] 郅斌伟, 张志江, 马硕, 等. 水底爆炸冲击波峰值压力数值仿真 [J]. 爆破, 2009, 26(1): 22–24, 28. doi: 10.3963/j.issn.1001-487X.2009.01.006

    ZHI B W, ZHANG Z J, MA S, et al. Research on shock wave peak pressure of under water explosion [J]. Blasting, 2009, 26(1): 22–24, 28. doi: 10.3963/j.issn.1001-487X.2009.01.006
    [13] COLE R H. Underwater explosion [M]. New Jersey: Princeton University Press, 1948: 118–127.
    [14] 张远平, 池家春, 龚晏青, 等. 含铝炸药水下爆炸性能的实验研究 [J]. 高压物理学报, 2010, 24(4): 316–320. doi: 10.11858/gywlxb.2010.04.013

    ZHANG Y P, CHI J C, GONG Y Q, et al. Experimental study on underwater explosion performance of aluminized explosive [J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 316–320. doi: 10.11858/gywlxb.2010.04.013
    [15] 刘科种. 爆炸能量输出结构与高威力炸药研究[D]. 北京: 北京理工大学, 2009.

    LIU K Z. Study on explosive energy output structure and high explosive charge [D]. Beijing: Beijing Institute of Technology, 2009.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  7298
  • HTML全文浏览量:  3396
  • PDF下载量:  45
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-04-19

目录

    /

    返回文章
    返回