爆炸驱动亚毫米级金属颗粒群的飞散特性

冯吉奎 皮爱国 刘源 景莹琳

冯吉奎, 皮爱国, 刘源, 景莹琳. 爆炸驱动亚毫米级金属颗粒群的飞散特性[J]. 高压物理学报, 2019, 33(6): 065104. doi: 10.11858/gywlxb.20190741
引用本文: 冯吉奎, 皮爱国, 刘源, 景莹琳. 爆炸驱动亚毫米级金属颗粒群的飞散特性[J]. 高压物理学报, 2019, 33(6): 065104. doi: 10.11858/gywlxb.20190741
FENG Jikui, PI Aiguo, LIU Yuan, JING Yinglin. Scattering Characteristics of Sub-Millimeter Metal Particle Group Driven by Explosion[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065104. doi: 10.11858/gywlxb.20190741
Citation: FENG Jikui, PI Aiguo, LIU Yuan, JING Yinglin. Scattering Characteristics of Sub-Millimeter Metal Particle Group Driven by Explosion[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065104. doi: 10.11858/gywlxb.20190741

爆炸驱动亚毫米级金属颗粒群的飞散特性

doi: 10.11858/gywlxb.20190741
详细信息
    作者简介:

    冯吉奎(1993-),男,硕士,主要从事结构与冲击动力学研究. E-mail: 18810998871@163.com

    通讯作者:

    皮爱国(1977-),男,博士,副教授,主要从事爆炸冲击研究. E-mail: aiguo_pi@bit.edu.cn

  • 中图分类号: O347.1; TJ55

Scattering Characteristics of Sub-Millimeter Metal Particle Group Driven by Explosion

  • 摘要: 采用试验与数值模拟相结合的方法,研究了爆炸驱动下亚毫米级WC颗粒群的飞散特性及其影响因素。首先对重金属嵌层碳纤维复合材料(CFRP)壳体开展静爆试验研究,测得距爆心一定距离处颗粒速度;然后基于离散元方法(DEM),依据实体情况对WC颗粒层的颗粒进行无序建模与数值模拟,分析了颗粒无序排列时不同颗粒、装填比及长径比对颗粒速度的影响规律。结果表明:在相同装填比下,颗粒粒径越大,单个颗粒所获得的速度越小;端部附近内外层颗粒速度相同,相对轴向位置X/L=0.62附近速度差最大;长径比在0.5~1.5范围内时,随着长径比的增加,颗粒的速度及速度差增大,起爆端相对于非起爆端颗粒速度增加较小。

     

  • 图  颗粒速度测试装置原理图

    Figure  1.  Schematic diagram of particle velocity test device

    图  战斗部结构

    Figure  2.  Warhead structure

    图  试验现场布局

    Figure  3.  Experimental field arrangement

    图  不同时刻颗粒飞散图

    Figure  4.  Particle scattering diagram at different times

    图  距爆心不同位置处颗粒速度历史

    Figure  5.  Velocity history of particle at different distance away from the charge center

    图  颗粒速度-相对轴向位置曲线

    Figure  6.  Particle velocity vs. relative axial position curve

    图  试验和理论公式计算得到的颗粒速度-位移曲线

    Figure  7.  Particle velocity vs. displacement obtained from experiments and empirical formula

    图  内外层颗粒初速与相对轴向位置关系

    Figure  8.  Initial velocity of inner and outer particles vs. relative axial position

    图  不同装填比颗粒初速与相对轴向位置的关系

    Figure  9.  Particle initial velocity vs. relative axial position under different filling ratios of charge

    图  10  不同长径比颗粒初速与相对轴向位置的关系

    Figure  10.  Initial particle velocity vs. relative axial position for different aspect ratios of charge

    表  1  装药参数

    Table  1.   Charge parameters

    $ \rho $/(g·cm−3)R/mmL/mmCFRP thickness/mmThickness of particle layer/mm
    Inner caseOuter case
    1.692050233
    下载: 导出CSV

    表  2  试验结果

    Table  2.   Experimental results

    No.DistanceMeasured velocity/(m·s–1)Fixed velocity/(m·s–1)
    137.5d705757
    240.0d685743
    362.5d635697
    下载: 导出CSV

    表  3  钨颗粒参数设置

    Table  3.   Parameters of tungsten particle

    $ \rho $/(g·cm–3)G/GPaA/GPaB/GPaNCMTM/KTR/K${ {{\dot \varepsilon }_0}}$/s–1cp/(J·g-1·K-1)
    17.62501.371.51×10–20.120.0161.01 4982941.01.35×10–3
    PCSpallITD1D2D3D4D5c0/(m·s–1)S1${\gamma_0}$
    –1.753.00.02.01.77–3.4003 8001.441.58
    下载: 导出CSV

    表  4  空气的状态方程参数

    Table  4.   Equation-of-state parameters of air

    $ \rho $/(g·cm–3)${C_0}$${C_1}$${C_2}$${C_3}$${C_4}$${C_5}$${C_6}$
    1.293×10–300000.40.40
    下载: 导出CSV

    表  5  炸药的JWL状态方程参数

    Table  5.   JWL equation-of-state parameters of explosive

    $ \rho $/(g·cm–3)AE/GPaBE/GPaR1R2$ \omega $pCJ/GPaDCJ/(m·s–1)e0/GPa
    1.69669.912.9014.31.20.3368 60010
    下载: 导出CSV

    表  6  炸药爆炸驱动不同颗粒的初速

    Table  6.   Maximum driving speed of different particles

    Granularity/mm$ \rho $/(g·cm–3)vmax/(m·s–1)Average velocity/(m·s–1)
    0.217.61 2491 060
    0.517.6984823
    0.717.6806686
    0.519.3574476
    下载: 导出CSV
  • [1] 刘意. 高密度惰性金属炸药爆轰与粒子流形成过程研究[D]. 北京: 北京理工大学, 2015: 7–37.

    LIU Y. Detonation of dense inert metal explosive and the formation of particles flow [D]. Beijing: Beijing Institute of Technology, 2015: 7–37.
    [2] FROST D L, ORNTHANALAI C, ZAREI Z, et al. Particle momentum effects from the detonation of heterogeneous explosives [J]. Journal of Applied Physics, 2007, 101(11): 113529. doi: 10.1063/1.2743912
    [3] GARDNER D R. Near-field dispersal modeling for liquid fuel-air explosives: SAND-90-0686 [R]. USA: New Mexico, Sandia National Laboratories, 1990.
    [4] GLASS M W. Far-field dispersal modeling for liquid fuel-air explosive: SAND90-0687 [R]. USA: New Mexico, Sandia National Laboratories, 1990.
    [5] BORISOV A A. Research on the explosive dispersion of FAE [R]. Bulawayo, Naweed Zaman, 1996.
    [6] ZHANG F, FROST D L, THIBAULT P A, et al. Explosive dispersal of solid particles [J]. Shock Waves, 2001, 10(6): 431–443. doi: 10.1007/PL00004050
    [7] 申超. 重金属粉末嵌层CFRP壳体内爆下低附带毁伤特性表征[D]. 北京: 北京理工大学, 2015: 9–22.

    SHEN C. The low collateral damage characterization of CFRP shell structure with heavy mental powder embedded as a layer under implosion [D]. Beijing: Beijing Institute of Technology, 2015: 9–22.
    [8] 白春华, 陈亚红, 李建平, 等. 爆炸抛撒金属颗粒群的装药方式 [J]. 爆炸与冲击, 2010, 30(6): 652–657. doi: 10.11883/1001-1455(2010)06-0652-06

    BAI C H, CHEN Y H, LI J P, et al. Charge forms for explosion dispersal of metal particles [J]. Explosion and Shock Waves, 2010, 30(6): 652–657. doi: 10.11883/1001-1455(2010)06-0652-06
    [9] CUNDALL P A. A computer model for simulating progress, large scale movements in blocky rock systems [C]//Proceedings of the Symposium of the International Society for Rock Mechanics. Nancy, France, 1971.
    [10] CUNDALL P A, STRACK O D L. Discussion: a discrete numerical model for granular assemblies [J]. Géotechnique, 1980, 30(3): 331–336. doi: 10.1680/geot.1980.30.3.331
    [11] LIU T, FLECK N A, WADLEY H N G, et al. The impact of sand slugs against beams and plates: coupled discrete particle/finite element simulations [J]. Journal of the Mechanics and Physics of Solids, 2013(61): 1798–1821.
    [12] OWEN P J, CLEARY P W. Prediction of screw conveyor performance using the discrete element method (DEM) [J]. Powder Technology, 2009, 193(3): 274–288. doi: 10.1016/j.powtec.2009.03.012
    [13] SAWAMOTO Y, TSUBOTA H, KASAI Y, et al. Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method [J]. Nuclear Engineering and Design, 1998, 179(2): 157–177. doi: 10.1016/S0029-5493(97)00268-9
    [14] CLEARY P W. Industrial particle flow modelling using discrete element method [J]. Engineering Computations, 2009, 26(6): 698–743. doi: 10.1108/02644400910975487
    [15] 薛琨, 许俊彪, 白春华. 爆炸驱动颗粒射流形成与演化的试验研究 [J]. 振动与冲击, 2014, 33(7): 126–132.

    XUE K, XU J B, BAI C H. Tests for formation and evolement of particle jets driven by and explosion [J]. Journal of Vibration and Shock, 2014, 33(7): 126–132.
    [16] 宋玉江, 周涛, 沈飞, 等. 双层预制破片爆炸驱动早期行为研究 [J]. 火炸药学报, 2018, 41(3): 308–313.

    SONG Y J, ZHOU T, SHEN F, et al. Research on the behavior of initial stage about explosively-driven double-layered premade fragments [J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 308–313.
    [17] 黄长强, 朱鹤松. 球形破片对靶板极限穿透速度公式的建立 [J]. 弹箭与制导学报, 1993(2): 58–61.

    HUANG C Q, ZHU H S. Establishment of the formula for the ultimate penetration speed of spherical fragments on the target plate [J]. Journal of Projectiles and Guides, 1993(2): 58–61.
    [18] 熊冉, 高欣宝, 许兴春, 等. 破片侵彻金属薄板后的剩余速度研究 [J]. 爆破, 2013, 30(4): 41–44. doi: 10.3963/j.issn.1001-487X.2013.04.009

    XIONG R, GAO X B, XU X C, et al. Research on residual velocity of fragment after penetrating metallic sheet [J]. Blasting, 2013, 30(4): 41–44. doi: 10.3963/j.issn.1001-487X.2013.04.009
    [19] 倪妍. CFRP壳体战斗部低附带毁伤特征表征[D]. 北京: 北京理工大学, 2014: 30–56.

    NI Y. Characterization of low incidental damage of CFRP shell warhead [D]. Beijing: Beijing Institute of Technology, 2014: 30–56.
    [20] BABU V, KULKARNI K, KANKANALAPALLI S, et al. Sensitivity of particle size in discrete element method to particle gas method (DEM_PGM) coupling in underbody blast simulations [C]//Ravi Thyagarajan 14th International LS-DYNA Conference. USA: Sanjay, 2016: 191–212.
    [21] 楼建锋, 王政, 洪滔, 等. 钨合金杆侵彻半无限厚铝合金靶的数值研究 [J]. 高压物理学报, 2009, 23(1): 65–71. doi: 10.11858/gywlxb.2017.03.001

    LOU J F, WANG Z, HONG T, et al. Numerical study on penetration of seni-infinite aluminum-alloy targets by tungsten-alloy rod [J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 65–71. doi: 10.11858/gywlxb.2017.03.001
    [22] 张世林. 轴向预制破片战斗部破片飞散特性影响因素分析[D]. 太原: 中北大学, 2012: 35–46.

    ZHANG S L. Analyze on the factors of dispersion characteristic of axial prefabricated fragments [D]. Taiyuan: North University of China, 2012: 35–46.
    [23] 谭多望, 温殿英, 张忠斌, 等. 球形破片长距离飞行时速度衰减规律研究 [J]. 高压物理学报, 2002, 16(4): 271–275. doi: 10.3969/j.issn.1000-5773.2002.04.006

    TAN D W, WEN D Y, ZHANG Z B, et al. Long-distance flight performances of spherical fragments [J]. Chinese Journal of High Pressure Physics, 2002, 16(4): 271–275. doi: 10.3969/j.issn.1000-5773.2002.04.006
    [24] 印立魁, 蒋建伟. 多层球形预制破片战斗部破片初速场的计算模型 [J]. 含能材料, 2014, 22(3): 300–305. doi: 10.3969/j.issn.1006-9941.2014.03.006

    YIN L K, JIANG J W. Calculation model of initial velocity on multilayered spherical fragments warhead [J]. Chinese Journal of Energetic Materials, 2014, 22(3): 300–305. doi: 10.3969/j.issn.1006-9941.2014.03.006
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  8444
  • HTML全文浏览量:  3229
  • PDF下载量:  37
出版历程
  • 收稿日期:  2019-03-14
  • 修回日期:  2019-04-01
  • 发布日期:  2019-10-25

目录

    /

    返回文章
    返回