飞秒激光烧蚀典型金属表面产生冲击波膨胀研究

魏健 张彬 刘晖 张航

魏健, 张彬, 刘晖, 张航. 飞秒激光烧蚀典型金属表面产生冲击波膨胀研究[J]. 高压物理学报, 2019, 33(4): 044201. doi: 10.11858/gywlxb.20190736
引用本文: 魏健, 张彬, 刘晖, 张航. 飞秒激光烧蚀典型金属表面产生冲击波膨胀研究[J]. 高压物理学报, 2019, 33(4): 044201. doi: 10.11858/gywlxb.20190736
WEI Jian, ZHANG Bin, LIU Hui, ZHANG Hang. Shockwave Expansion on Typical Metal Surface Ablated by Femtosecond Laser[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044201. doi: 10.11858/gywlxb.20190736
Citation: WEI Jian, ZHANG Bin, LIU Hui, ZHANG Hang. Shockwave Expansion on Typical Metal Surface Ablated by Femtosecond Laser[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044201. doi: 10.11858/gywlxb.20190736

飞秒激光烧蚀典型金属表面产生冲击波膨胀研究

doi: 10.11858/gywlxb.20190736
基金项目: 国家自然科学基金(11872058);超光滑表面无损检测安徽省重点实验室开放课题(CGHBMWSJC06)
详细信息
    作者简介:

    魏 健(1986-),男,硕士研究生,主要从事超快激光诊断技术研究. E-mail:wj_skx@126.com

    通讯作者:

    张 彬(1969-),女,博士,教授,主要从事高功率激光技术、非线性光学等研究. E-mail:zhangbinff@sohu.com

  • 中图分类号: O347.5

Shockwave Expansion on Typical Metal Surface Ablated by Femtosecond Laser

  • 摘要: 利用时间分辨阴影成像技术进行飞秒激光烧蚀金属表面研究可以直观获取飞秒激光烧蚀金属表面产生冲击波膨胀过程的图像。通过对比飞秒激光烧蚀金属铝、铜、铁靶表面的冲击波膨胀形式发现:金属铜、铁表面的冲击波均以球面波形式传播;由于受到烧蚀物质喷溅的影响,铝靶表面竖直方向的冲击波传播形式由球面波转化为柱面波。

     

  • 图  时间分辨阴影成像系统实验装置

    Figure  1.  Experimental setup of time-resolved shadowgraph imaging system

    图  飞秒激光烧蚀金属Al表面产生冲击波膨胀成像

    Figure  2.  Time-resolved shadowgraph imaging of ultrafast shockwave evolution induced by femtosecond laser ablating on Al target

    图  飞秒激光烧蚀金属Cu表面冲击波膨胀成像

    Figure  3.  Time-resolved shadowgraph imaging of ultrafast shockwave evolution induced by femtosecond laser ablating on Cu target

    图  飞秒激光烧蚀金属Fe表面冲击波膨胀成像

    Figure  4.  Time-resolved shadowgraph imaging of ultrafast shockwave evolution induced by femtosecond laser ablating on Fe target

    图  飞秒激光烧蚀Al、Cu和Fe金属表面冲击波膨胀动力学分析

    Figure  5.  Ultrafast dynamics of shockwave induced by femtosecond laser ablation on metal surface of Al, Cu and Fe

    图  不同能量密度飞秒激光烧蚀Al表面的冲击波膨胀成像

    Figure  6.  Ultrafast shock wave expansion on Al surface under femtosecond ablating with different pulse energy

  • [1] EVANS R, BADGER A D, FALLIÈS F, et al. Time- and space resolved optical probing of femtosecond-laser-driven shock waves in aluminum [J]. Physical Review Letters, 1996, 77(16): 3359–3362. doi: 10.1103/PhysRevLett.77.3359
    [2] GAHAGAN K T, MOORE D S, FUNK DAVID J, et al. Measurement of shock wave rise times in metal thin films [J]. Physical Review Letters, 2000, 85(15): 3205–3208. doi: 10.1103/PhysRevLett.85.3205
    [3] CONNELL G O, DONNELLY T, LUNNEY J G. Nanoparticle plume dynamics in femtosecond laser ablation of gold [J]. Applied Physics A, 2014, 117(1): 289–293. doi: 10.1007/s00339-013-8209-y
    [4] ZHAO X, SHIN Y C. A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interation with metals [J]. Journal of Physical D: Applied Physics, 2002, 45(10): 105201.
    [5] ZHANG N, ZHU X, YANG J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum [J]. Physical Review Letters, 2007, 99(16): 167602. doi: 10.1103/PhysRevLett.99.167602
    [6] WU Z, ZHU X, ZHANG N. Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressure [J]. Journal of Applied Physics, 2011, 109(5): 053113. doi: 10.1063/1.3554442
    [7] 王文婷, 张楠, 王明伟, 等. 飞秒激光烧蚀金属靶的冲击温度 [J]. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601

    WANG W T, ZHANG N, WANG M W, et al. Shock temperature of femtosecond laser ablation of solid target [J]. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [8] LI R Z, ZHU P, CHEN L, et al. Investigation of transient surface electric field induced by femtosecond laser irradiation of aluminum [J]. New Journal of Physics, 2014, 16(10): 103013. doi: 10.1088/1367-2630/16/10/103013
    [9] 许孝芳, 李晓良, 王庆伟, 等. 三束飞秒激光辐照下铜膜内电子非平衡热输运 [J]. 红外与激光工程, 2019, 48(2): 0206001. doi: 10.3788/IRLA201948.0206001

    XU X F, LI X L, WANG Q W, et al. Non-equilibrium heat transport of electron in Cu films irradiated by three femtosecond laser beams [J]. Infrared and Laser Engineering, 2019, 48(2): 0206001. doi: 10.3788/IRLA201948.0206001
    [10] 倪晓昌, 王清月, 梁建国. 飞秒脉冲参量影响金属表面热特性的研究 [J]. 光子学报, 2006, 35(1): 1–4. doi: 10.1677/jme.1.02008

    NI X C, WANG Q Y, LIANG J G. The thermal character analysis of the femtosecond laser pulse parameters’ effect on metal surface [J]. Acta Photonica Sinica, 2006, 35(1): 1–4. doi: 10.1677/jme.1.02008
    [11] 刘国栋, 罗福, 王贵兵. 飞秒激光辐照下硅薄膜的飞傅里叶能量输运研究 [J]. 高压物理学报, 2007, 21(2): 183–187. doi: 10.3969/j.issn.1000-5773.2007.02.011

    LIU G D, LUO F, WANG G B. Non-Fourier energy transport in silicon thin films during femtosecond laser heating [J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 183–187. doi: 10.3969/j.issn.1000-5773.2007.02.011
    [12] FEINAEUGLE M, ALLONCLE A P, DELAPORTE P, et al. Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials [J]. Applied Surface Science, 2012, 258(22): 8475–8483. doi: 10.1016/j.apsusc.2012.04.101
    [13] SEDOV L I. Similarity and dimensional methods in mechanics [M]. Boca Raton,FL:CRC Press, 1993.
  • 加载中
图(6)
计量
  • 文章访问数:  5644
  • HTML全文浏览量:  2847
  • PDF下载量:  36
出版历程
  • 收稿日期:  2019-03-08
  • 修回日期:  2019-03-31

目录

    /

    返回文章
    返回