组合装药的撞击安全性与内爆威力试验研究

张广华 屈可朋 沈飞 王辉

张广华, 屈可朋, 沈飞, 王辉. 组合装药的撞击安全性与内爆威力试验研究[J]. 高压物理学报, 2019, 33(4): 045201. doi: 10.11858/gywlxb.20190735
引用本文: 张广华, 屈可朋, 沈飞, 王辉. 组合装药的撞击安全性与内爆威力试验研究[J]. 高压物理学报, 2019, 33(4): 045201. doi: 10.11858/gywlxb.20190735
ZHANG Guanghua, QU Kepeng, SHEN Fei, WANG Hui. Experimental Study on Impact Safety and Implosing Energy Release Characteristics of Composed Charge[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045201. doi: 10.11858/gywlxb.20190735
Citation: ZHANG Guanghua, QU Kepeng, SHEN Fei, WANG Hui. Experimental Study on Impact Safety and Implosing Energy Release Characteristics of Composed Charge[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045201. doi: 10.11858/gywlxb.20190735

组合装药的撞击安全性与内爆威力试验研究

doi: 10.11858/gywlxb.20190735
基金项目: 国防基础科研专项(05020501)
详细信息
    作者简介:

    张广华(1987-) ,男,博士,助理研究员,主要从事毁伤理论与技术研究. E-mail:guanghua0611@sina.com

    通讯作者:

    王 辉(1977-),男,硕士,高级工程师,主要从事炸药爆轰性能研究. E-mail:land_wind@163.com

  • 中图分类号: TJ55; O389

Experimental Study on Impact Safety and Implosing Energy Release Characteristics of Composed Charge

  • 摘要: 为了验证某组合装药的撞击安全性与内爆威力,开展了组合装药的大型落锤试验及爆炸罐内爆威力试验研究。结果表明:单一温压炸药在400 kg落锤作用下的临界落高为2.2 m,组合装药分别在2.2、2.3、2.5和2.7 m落高时均未发生爆炸反应,证明组合装药具有更好的撞击安全性;组合装药的初始冲击波超压峰值是单一温压炸药的61.9%,比冲量是单一温压炸药的99.4%,准静态压力峰值是单一温压炸药的94.5%。考虑到炸药在有限空间内爆炸的能量释放特性,将准静态压力峰值作为威力评价标准更为合适。试验结果证明组合装药的内爆威力与单一温压炸药相当。

     

  • 图  落锤试验装置示意图

    Figure  1.  Schematic of drop hammer system

    图  组合装药排布

    Figure  2.  Assembly of composed charge

    图  典型落锤加载曲线

    Figure  3.  Typical loading curve of drop hammer

    图  真空爆炸罐外观

    Figure  4.  Picture of the vacuum explosion tank

    图  威力试验样品示意图

    Figure  5.  Schematic of the experimental samples used for explosion test

    图  真空爆炸罐示意图

    Figure  6.  Schematic of the vacuum explosion tank

    图  冲击波超压实测曲线

    Figure  7.  Measured blast wave overpressure curves

    图  不同装药的准静态压力变化曲线

    Figure  8.  Quasi-static pressure curves of different charges

    表  1  组合装药落锤试验结果

    Table  1.   Drop hammer experimental results of composed charge

    No.h/mσ/MPat/msResponse characteristics
    12.28295.54No-ignition
    22.28276.01No-ignition
    32.38395.55No-ignition
    42.38375.54No-ignition
    52.58815.63No-ignition
    62.58755.82No-ignition
    72.79025.77No-ignition
    82.78955.57No-ignition
    下载: 导出CSV

    表  2  冲击波超压峰值及比冲量

    Table  2.   Blast wave overpressure and specific impulse

    Explosive${\Delta P/{\rm{MPa}}}$Specific impulse/(Pa·s)
    TNT 8.29 893
    HA-112.751170
    RAP-1 6.37 658
    Dual charge 7.891110
    下载: 导出CSV
  • [1] KERNEN P.Way and methods to insensitive munitions:IM recipes version [C]//Processing of Insensitive Munitions Technology Symposium. Williamsburg: NSWC, 1994.
    [2] 韩勇, 鲁斌, 蒋志海, 等. JO-9159/ECX复合装药的冲击波感度研究 [J]. 含能材料, 2008, 16(2): 164–166. doi: 10.3969/j.issn.1006-9941.2008.02.012

    HAN Y, LU B, JIANG Z H, et al. Shock sensitivity of JO-9159/ECX composite charge [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 164–166. doi: 10.3969/j.issn.1006-9941.2008.02.012
    [3] NOUGUEZ B.Dual formulation warheads:a mature technology [C]//Processing of Insensitive Munitions Technology Symposium.Williamsburg:NSWC,1996.
    [4] 沈飞, 王辉, 罗一鸣. DNTF基同轴双元装药的爆轰波形及驱动特性 [J]. 含能材料, 2018, 26(7): 614–619. doi: 10.11943/j.issn.1006-9941.2018.07.011

    SHEN F, WANG H, LUO Y M. Detonation wave-shape and driving performance of coaxial binary charge of DNTF-based Aluminized explosives [J]. Energetic Materials, 2018, 26(7): 614–619. doi: 10.11943/j.issn.1006-9941.2018.07.011
    [5] VITTORIA M, BURGESS W.Sympathetic detonation testing of a dual explosive warhead concept for large diameter warheads [C]//Processing of Insensitive Munitions Technology Symposium. Williamsburg: NSWC, 1994.
    [6] 沈飞, 王辉, 罗一鸣. 一种同轴双元组合装药的爆轰波形及驱动特性 [J]. 火炸药学报, 2018, 41(6): 588–593.

    SHEN F, WANG H, LUO Y M. Detonation waveform and driving performance of a kind of coaxial binary composite charge [J]. Chinese Journal of Explosives & Propellants, 2018, 41(6): 588–593.
    [7] 向梅, 黄毅民, 饶国宁, 等. 复合装药结构隔板实验与数值模拟 [J]. 兵工学报, 2013, 34(2): 246–250.

    XIANG M, HUANG Y M, RAO G N, et al. Experimental and numerical simulation study of the shockwave sensitivity of composite charge explosive [J]. Acta Armamentarii, 2013, 34(2): 246–250.
    [8] 向梅, 饶国宁, 彭金华. 钝感复合装药结构枪击试验尺寸效应的数值模拟 [J]. 火炸药学报, 2010, 33(6): 30–33. doi: 10.3969/j.issn.1007-7812.2010.06.007

    XIANG M, RAO G N, PENG J H. Numerical simulation on bullet impact test dimensional effect for the composite structure of insensitive ammunition [J]. Chinese Journal of Explosives & Propellants, 2010, 33(6): 30–33. doi: 10.3969/j.issn.1007-7812.2010.06.007
    [9] 尹俊婷, 蔚红建, 栗宝华, 等. 金属加速炸药/高爆热炸药复合装药爆炸特性研究 [J]. 火工品, 2015(3): 33–37. doi: 10.3969/j.issn.1003-1480.2015.03.010

    YIN J T, WEI H J, LI B H, et al. Explosion characteristics of metal accelerating explosive/ high detonation heat explosive composite charge [J]. Initiators & Pyrotechnics, 2015(3): 33–37. doi: 10.3969/j.issn.1003-1480.2015.03.010
    [10] 牛余雷, 王晓峰, 余然. 双元复合炸药装药水下爆炸能量输出特性 [J]. 含能材料, 2009, 17(4): 415–419. doi: 10.3969/j.issn.1006-9941.2009.04.010

    NIU Y L, WANG X F, YU R. Characteristics of energy output of underwater explosion for dual explosive charge [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 415–419. doi: 10.3969/j.issn.1006-9941.2009.04.010
    [11] 屈可朋, 沈飞, 王世英, 等. RDX基PBX炸药在不同应力率下的撞击安全性 [J]. 火炸药学报, 2014, 37(6): 40–43.

    QU K P, SHEN F, WANG S Y, et al. Research on impact safety of a RDX-based PBX explosive at different stress rate [J]. Chinese Journal of Explosives & Propellants, 2014, 37(6): 40–43.
    [12] 肖玮, 李亮亮, 屈可朋, 等. 某RDX基含Al炸药发射安全性 [J]. 含能材料, 2015, 23(1): 62–66. doi: 10.11943/j.issn.1006-9941.2015.01.013

    XIAO W, LI L L, QU K P, et al. Launch safety of RDX-based aluminized explosive [J]. Chinese Journal of Energetic Materials, 2015, 23(1): 62–66. doi: 10.11943/j.issn.1006-9941.2015.01.013
    [13] 陈鹏万, 丁雁生. 高聚物粘结炸药的力学行为及变形破坏机理 [J]. 含能材料, 2000, 8(4): 161–164. doi: 10.3969/j.issn.1006-9941.2000.04.005

    CHEN P W, DING Y S. Mechanical behaviour and deformation and failure mechanisms of polymer bonded explosives [J]. Chinese Journal of Energetic Materials, 2000, 8(4): 161–164. doi: 10.3969/j.issn.1006-9941.2000.04.005
    [14] 黄亚峰, 田轩, 冯博, 等. 温压炸药爆炸性能实验研究 [J]. 爆炸与冲击, 2016, 36(4): 573–576. doi: 10.11883/1001-1455(2016)04-0573-04

    HUANG Y F, TIAN X, FENG B, et al. Experimental study on explosion performance of thermobaric explosive [J]. Explosion and Shock Waves, 2016, 36(4): 573–576. doi: 10.11883/1001-1455(2016)04-0573-04
    [15] AHMED K M, HOSAM E K, ELBASUNEY S. Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation [J]. Journal of Hazardous Materials, 2016, 301: 492–503. doi: 10.1016/j.jhazmat.2015.09.019
    [16] 张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. doi: 10.11883/bzycj-2017-0170

    ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. doi: 10.11883/bzycj-2017-0170
    [17] 金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性 [J]. 火炸药学报, 2013, 36(3): 39–41. doi: 10.3969/j.issn.1007-7812.2013.03.009

    JIN P G, GUO W, WANG J L, et al. Explosion pressure characteristics of TNT under closed condition [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 39–41. doi: 10.3969/j.issn.1007-7812.2013.03.009
    [18] 蒋浩征, 俞明义. 导弹技术词典 [M]. 北京: 宇航出版社, 1986: 144–145.
    [19] AMES R G, DROTAR J T, SILBER J, et a1.Quantitative distinction between detonation and after burn energy deposition using pressure-time histories in enclosed explosions [C]//13th International Detonation Symposium. Norfolk Virginia: Office of Naval Research, 2006.
    [20] DAVID P E. Internal blast test to support the Tomahawk and APET programs " munitions survivability in unified operations” [C]//Insensitive Munitions Technology Symposium. Las Vegas, NV, 1996.
    [21] 杨雄, 王晓峰, 黄亚峰, 等. 真空环境下铝含量对HMX基炸药爆炸场压力和温度的影响 [J]. 火炸药学报, 2017, 40(6): 73–77.

    YANG X, WANG X F, HUANG Y F, et al. Effect of Al content on the explosion fild pressure and temperature of HMX-based explosive in vacuum environment [J]. Chinese Journal of Explosives & Propellants, 2017, 40(6): 73–77.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  5602
  • HTML全文浏览量:  2481
  • PDF下载量:  35
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-03-18

目录

    /

    返回文章
    返回