Experimental Study on Impact Safety and Implosing Energy Release Characteristics of Composed Charge
-
摘要: 为了验证某组合装药的撞击安全性与内爆威力,开展了组合装药的大型落锤试验及爆炸罐内爆威力试验研究。结果表明:单一温压炸药在400 kg落锤作用下的临界落高为2.2 m,组合装药分别在2.2、2.3、2.5和2.7 m落高时均未发生爆炸反应,证明组合装药具有更好的撞击安全性;组合装药的初始冲击波超压峰值是单一温压炸药的61.9%,比冲量是单一温压炸药的99.4%,准静态压力峰值是单一温压炸药的94.5%。考虑到炸药在有限空间内爆炸的能量释放特性,将准静态压力峰值作为威力评价标准更为合适。试验结果证明组合装药的内爆威力与单一温压炸药相当。Abstract: To verify impact safety and implosion power of a composed charge, the drop hammer tests and implosion power experiments were conducted. The results show that critical height of the single thermo-baric explosive is 2.2 m under loading of 400 kg hammer, while the composed charge did not ignite under height from 2.2 m to 2.7 m, which means that the composed charge holds a better impact safety property. Peak overpressure of the composed charge was 61.9% of the single thermo-baric explosive, the impulse of the composed charge was 99.4% of the single thermo-baric explosive, and the peak quasi-static pressure of the composed charge was 94.5% of the single thermo-baric explosive. Considering energy release characteristics within a limited space, it is more suitable to use peak quasi-static pressure as an evaluation standard. The test results show that implosing energy release characteristics of the composed charge is almost the same as the single thermo-baric explosive.
-
Key words:
- composed charge /
- impact safety /
- implosion power /
- specific impulse /
- quasi-static pressure
-
表 1 组合装药落锤试验结果
Table 1. Drop hammer experimental results of composed charge
No. h/m σ/MPa t/ms Response characteristics 1 2.2 829 5.54 No-ignition 2 2.2 827 6.01 No-ignition 3 2.3 839 5.55 No-ignition 4 2.3 837 5.54 No-ignition 5 2.5 881 5.63 No-ignition 6 2.5 875 5.82 No-ignition 7 2.7 902 5.77 No-ignition 8 2.7 895 5.57 No-ignition 表 2 冲击波超压峰值及比冲量
Table 2. Blast wave overpressure and specific impulse
Explosive ${\Delta P/{\rm{MPa}}}$ Specific impulse/(Pa·s) TNT 8.29 893 HA-1 12.75 1170 RAP-1 6.37 658 Dual charge 7.89 1110 -
[1] KERNEN P.Way and methods to insensitive munitions:IM recipes version [C]//Processing of Insensitive Munitions Technology Symposium. Williamsburg: NSWC, 1994. [2] 韩勇, 鲁斌, 蒋志海, 等. JO-9159/ECX复合装药的冲击波感度研究 [J]. 含能材料, 2008, 16(2): 164–166. doi: 10.3969/j.issn.1006-9941.2008.02.012HAN Y, LU B, JIANG Z H, et al. Shock sensitivity of JO-9159/ECX composite charge [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 164–166. doi: 10.3969/j.issn.1006-9941.2008.02.012 [3] NOUGUEZ B.Dual formulation warheads:a mature technology [C]//Processing of Insensitive Munitions Technology Symposium.Williamsburg:NSWC,1996. [4] 沈飞, 王辉, 罗一鸣. DNTF基同轴双元装药的爆轰波形及驱动特性 [J]. 含能材料, 2018, 26(7): 614–619. doi: 10.11943/j.issn.1006-9941.2018.07.011SHEN F, WANG H, LUO Y M. Detonation wave-shape and driving performance of coaxial binary charge of DNTF-based Aluminized explosives [J]. Energetic Materials, 2018, 26(7): 614–619. doi: 10.11943/j.issn.1006-9941.2018.07.011 [5] VITTORIA M, BURGESS W.Sympathetic detonation testing of a dual explosive warhead concept for large diameter warheads [C]//Processing of Insensitive Munitions Technology Symposium. Williamsburg: NSWC, 1994. [6] 沈飞, 王辉, 罗一鸣. 一种同轴双元组合装药的爆轰波形及驱动特性 [J]. 火炸药学报, 2018, 41(6): 588–593.SHEN F, WANG H, LUO Y M. Detonation waveform and driving performance of a kind of coaxial binary composite charge [J]. Chinese Journal of Explosives & Propellants, 2018, 41(6): 588–593. [7] 向梅, 黄毅民, 饶国宁, 等. 复合装药结构隔板实验与数值模拟 [J]. 兵工学报, 2013, 34(2): 246–250.XIANG M, HUANG Y M, RAO G N, et al. Experimental and numerical simulation study of the shockwave sensitivity of composite charge explosive [J]. Acta Armamentarii, 2013, 34(2): 246–250. [8] 向梅, 饶国宁, 彭金华. 钝感复合装药结构枪击试验尺寸效应的数值模拟 [J]. 火炸药学报, 2010, 33(6): 30–33. doi: 10.3969/j.issn.1007-7812.2010.06.007XIANG M, RAO G N, PENG J H. Numerical simulation on bullet impact test dimensional effect for the composite structure of insensitive ammunition [J]. Chinese Journal of Explosives & Propellants, 2010, 33(6): 30–33. doi: 10.3969/j.issn.1007-7812.2010.06.007 [9] 尹俊婷, 蔚红建, 栗宝华, 等. 金属加速炸药/高爆热炸药复合装药爆炸特性研究 [J]. 火工品, 2015(3): 33–37. doi: 10.3969/j.issn.1003-1480.2015.03.010YIN J T, WEI H J, LI B H, et al. Explosion characteristics of metal accelerating explosive/ high detonation heat explosive composite charge [J]. Initiators & Pyrotechnics, 2015(3): 33–37. doi: 10.3969/j.issn.1003-1480.2015.03.010 [10] 牛余雷, 王晓峰, 余然. 双元复合炸药装药水下爆炸能量输出特性 [J]. 含能材料, 2009, 17(4): 415–419. doi: 10.3969/j.issn.1006-9941.2009.04.010NIU Y L, WANG X F, YU R. Characteristics of energy output of underwater explosion for dual explosive charge [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 415–419. doi: 10.3969/j.issn.1006-9941.2009.04.010 [11] 屈可朋, 沈飞, 王世英, 等. RDX基PBX炸药在不同应力率下的撞击安全性 [J]. 火炸药学报, 2014, 37(6): 40–43.QU K P, SHEN F, WANG S Y, et al. Research on impact safety of a RDX-based PBX explosive at different stress rate [J]. Chinese Journal of Explosives & Propellants, 2014, 37(6): 40–43. [12] 肖玮, 李亮亮, 屈可朋, 等. 某RDX基含Al炸药发射安全性 [J]. 含能材料, 2015, 23(1): 62–66. doi: 10.11943/j.issn.1006-9941.2015.01.013XIAO W, LI L L, QU K P, et al. Launch safety of RDX-based aluminized explosive [J]. Chinese Journal of Energetic Materials, 2015, 23(1): 62–66. doi: 10.11943/j.issn.1006-9941.2015.01.013 [13] 陈鹏万, 丁雁生. 高聚物粘结炸药的力学行为及变形破坏机理 [J]. 含能材料, 2000, 8(4): 161–164. doi: 10.3969/j.issn.1006-9941.2000.04.005CHEN P W, DING Y S. Mechanical behaviour and deformation and failure mechanisms of polymer bonded explosives [J]. Chinese Journal of Energetic Materials, 2000, 8(4): 161–164. doi: 10.3969/j.issn.1006-9941.2000.04.005 [14] 黄亚峰, 田轩, 冯博, 等. 温压炸药爆炸性能实验研究 [J]. 爆炸与冲击, 2016, 36(4): 573–576. doi: 10.11883/1001-1455(2016)04-0573-04HUANG Y F, TIAN X, FENG B, et al. Experimental study on explosion performance of thermobaric explosive [J]. Explosion and Shock Waves, 2016, 36(4): 573–576. doi: 10.11883/1001-1455(2016)04-0573-04 [15] AHMED K M, HOSAM E K, ELBASUNEY S. Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation [J]. Journal of Hazardous Materials, 2016, 301: 492–503. doi: 10.1016/j.jhazmat.2015.09.019 [16] 张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. doi: 10.11883/bzycj-2017-0170ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. doi: 10.11883/bzycj-2017-0170 [17] 金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性 [J]. 火炸药学报, 2013, 36(3): 39–41. doi: 10.3969/j.issn.1007-7812.2013.03.009JIN P G, GUO W, WANG J L, et al. Explosion pressure characteristics of TNT under closed condition [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 39–41. doi: 10.3969/j.issn.1007-7812.2013.03.009 [18] 蒋浩征, 俞明义. 导弹技术词典 [M]. 北京: 宇航出版社, 1986: 144–145. [19] AMES R G, DROTAR J T, SILBER J, et a1.Quantitative distinction between detonation and after burn energy deposition using pressure-time histories in enclosed explosions [C]//13th International Detonation Symposium. Norfolk Virginia: Office of Naval Research, 2006. [20] DAVID P E. Internal blast test to support the Tomahawk and APET programs " munitions survivability in unified operations” [C]//Insensitive Munitions Technology Symposium. Las Vegas, NV, 1996. [21] 杨雄, 王晓峰, 黄亚峰, 等. 真空环境下铝含量对HMX基炸药爆炸场压力和温度的影响 [J]. 火炸药学报, 2017, 40(6): 73–77.YANG X, WANG X F, HUANG Y F, et al. Effect of Al content on the explosion fild pressure and temperature of HMX-based explosive in vacuum environment [J]. Chinese Journal of Explosives & Propellants, 2017, 40(6): 73–77.