Energy Dissipation of Tungsten Alloys Cylindrical Rods Hypervelocity Impacting Thin Steel Target
-
摘要: 超高速撞击过程伴随着复杂的物理过程。为分析杆式圆柱形钨合金弹超高速撞击薄钢靶时的物理过程,采用AUTODYN/SPH数值仿真计算方法获得了撞击过程模型及每个光滑粒子流体动力学信息,并通过广度搜索破片识别程序识别每个破片所含粒子,利用MATLAB编程对破片粒子数据信息进行统计分析,获得弹靶撞击过程的变化特性、弹靶破片数量、相关能量随撞击时间的变化规律。通过分析发现:随着弹体撞击速度的增加,剩余弹体被严重侵蚀,且弹体能量损耗增加,弹体损失的能量主要转变为弹靶破片动能;计算得到了撞击20
μs 时的能量损耗直方图,同时分析了发生撞击时靶板的能量变化过程,并简要描述了该过程。-
关键词:
- 超高速撞击 /
- 光滑粒子流体动力学方法 /
- 弹靶破片 /
- 能量耗散 /
- 破片识别
Abstract: The complex physical process is always accompanied with hypervelocity impact. In this paper, the physical process of rod-shaped cylindrical tungsten alloy bomb impact thin steel target has been studied. The impact process model and fluid dynamic information of every particle were obtained by means of AUTODYN/SPH method and the fragment particles were identified through range search and fragment identification program. Some information of the elastic target change process, the number of the target fragment, the change of the relative energy with the time during the impact were obtained by MATLAB. It is found that with the increase of impact speed, the residual body is eroded seriously, and the energy loss of missile body is increased, and the energy of the body loss is mainly converted into the kinetic energy of the bomb target. The energy loss histogram of the impact at the time of 20 μs and energy change process for the target plate impacted have been analyzed. -
复合材料板具有较高的强度质量比、良好的耐腐蚀性和优异的可设计性,被广泛应用于航空航天和工业制造等领域[1]。在实际使用中复合材料板经常受到不同形式的冲击荷载,从而产生振动和屈曲问题,因此冲击载荷作用下复合材料板的动力稳定性问题备受关注。
近年来关于复合材料板的研究越来越多,尤其是冲击荷载作用下复合材料板的动力稳定性问题研究[2],对工程部件结构设计和使用具有重要的意义。Sun等[3]研究了在加热环境中应力波对功能梯度圆柱壳轴向冲击屈曲的影响;毛柳伟等[4]对弹性直杆在应力波作用下的动力分叉屈曲进行了分析与探讨,提出了求解应力波作用下直杆动力屈曲的数值方法;Lepik[5]讨论了在应力波影响下轴向压缩的弹塑性梁的屈曲;Zhang等[6]分析了不确定初始几何缺陷对薄板屈曲的影响;Abdelaziz等[7]利用双曲线剪切变形理论,分析了在各种边界条件下复合材料板的弯曲变形和屈曲;Kouchakzadeh等[8]采用线性和旋转弹簧的均匀分布来模拟边界条件,对矩形层压复合板的屈曲进行了分析;Czapski等[9]通过数值和实验方法,研究了残余应力对压缩至破坏期间薄壁层压板屈曲性能的影响。
在实际工程中,复合材料板多应用于振动环境,其在动力响应下的动态特性和振动分析是必不可少的,因而对该类材料的振动屈曲研究至关重要。Kuo[10]研究了两种非均匀分布纤维复合材料板的振动屈曲问题,Villarreal等[11]对典型正交异性板的本征频率和振动屈曲进行了理论分析,Eftekhari等[12]提出了通过组合应用有限元方法和微分正交方法求解矩形板的振动屈曲问题,Rehman等[13]探讨了壳体结构的缺陷和损坏对结构振动屈曲的影响,Sayyad等[14]将三角剪切变形理论应用于复合板的变形和振动屈曲研究。
关于复合材料板的振动屈曲问题已开展了较多的研究,但大多未考虑应力波效应对振动屈曲的影响,而动力屈曲一般与应力波相联系且具有局部发生的特点,研究含初始缺陷的复合材料板能更好地揭示实际工程中复合材料板在不同工况下发生动力屈曲的机理。基于此,本研究利用Kirchhoff薄板理论和Hamilton原理,考虑应力波效应,建立含初始几何缺陷的四边简支复合材料板的振动控制方程,得到板的屈曲临界荷载表达式,在此基础上通过数值计算讨论初始几何缺陷、振型函数初相位、铺层角度、屈曲模态阶数和铺层层数对复合材料板振动屈曲临界荷载的影响,为工程实际提供理论依据。
1. 复合材料板的控制方程
复合材料板在x = La处为固定边界条件,其余3边为简支边界条件,在
z = 0的中性面上受x方向的面内阶跃荷载N作用,如图1所示。板在z 方向上含初始几何缺陷w1,且x、y、z 方向的位移分别为u、v、w。复合材料板的长度、宽度和厚度分别为La、Lb、h,由n层单层板组成,θ 为单层板的铺层角度,即纤维材料铺设方向与x方向的夹角(见图1)。根据Kirchhoff薄板理论及经典弹性理论,复合材料板的位移与应变、弹性曲面的曲率和扭率的表达式为
{w=w1+w0u=u0−z∂(w−w1)∂xv=v0−z∂(w−w1)∂y (1) {ε0x=∂u0∂xε0y=∂v0∂yγ0xy=∂u0∂y+∂v0∂x (2) {κx=−∂2(w−w1)∂x2κy=−∂2(w−w1)∂y2κxy=−2∂2(w−w1)∂x∂y (3) {εx=ε0x+zκxεy=ε0y+zκyγxy=γ0xy+zκxy (4) 式中:u0、v0、w0分别为复合材料板在x、y、
z 方向上的中面位移,ε0x 、ε0y 、γ0xy 分别为复合材料板中面应变分量,κx 、κy 、κxy 为中面的曲率和扭率,εx 、εy 、γxy 为复合材料板任意一点的应变。板的内力(Nx、Ny、Nxy)与内力矩(Mx、My、Mxy)之间的关系为
[NxNyNxyMxMyMxy]=[A11A12A16B11B12B16A12A22A26B12B22B26A16A26A66B16B26B66B11B12B16D11D12D16B12B22B26D12D22D26B16B26B66D16D26D66][ε0xε0yγ0xyκxκyκxy] (5) 式中:
Aij 、Bij 、Dij(i,j=1,2,6) 分别表示板的拉伸刚度、耦合刚度和弯曲刚度系数[15],表达式如下{Aij=n∑k=1¯Qkij(hk−hk−1)Bij=12n∑k=1¯Qkij(h2k−h2k−1)Dij=13n∑k=1¯Qkij(h3k−h3k−1) (6) 式中:
¯Qkij 为复合材料板第k 层的偏轴刚度系数¯Q=P−1Q(P−1)T (7) 式中:P为坐标转换矩阵,Q为刚度矩阵。
P=[cos2θsin2θ2sinθcosθsin2θcos2θ−2sinθcosθ−sinθcosθsinθcosθcos2θ−sin2θ] (8) Q=[Q11Q120Q12Q22000Q66] (9) 考虑材料为正交各向异性材料,设E1、E2、G12、μ12、μ21分别为板材料x和y方向的拉压弹性模量、剪切弹性模量、主泊松比和副泊松比,则有
Q11=E11−μ12μ21,Q22=E21−μ12μ21,Q12=μ12E21−μ12μ21=μ21E11−μ12μ21,Q66=G12 (10) 复合材料板在左端受面内冲击荷载N作用(见图1)时,应力波沿x方向在板内传播,其应力变化如图2所示。
当应力波传播至波阵面位置Lcr(临界长度)时,板发生振动屈曲,板的内力Nt和应力波波速c分别表示为
Nt={N0⩽x⩽Lcr0x>Lcr,c=√A11ρh (11) 板发生振动屈曲时的变形能可以表示为
U=12∫Lcr0∫Lb0(Nxε0x+Nyε0y+Nxyγ0xy+Mxκx+Myκy+Mxyκxy)dxdy=12∫Lcr0∫Lb0[Nx∂u0∂x+Ny∂v0∂y+Nxy(∂u0∂x+∂v0∂y)+Mx(−∂2w0∂x2)+My(−∂2w0∂y2)+Mxy(−2∂2w0∂x∂y)]dxdy (12) 发生振动屈曲时的动能(考虑转动惯量)可以表示为
T=12∫h/2−h/2∫Lcr0∫Lb0ρ(k)[(∂u∂t)2+(∂v∂t)2+(∂w0∂t)2]dxdydz=12∫Lcr0∫Lb0[I0(∂u0∂t)2+I0(∂v0∂t)2+I0(∂w0∂t)2−2I1∂u0∂t∂2w0∂x∂t−2I1∂v0∂t∂2w0∂y∂t+I2(∂2w0∂x∂t)2+I2(∂2w0∂y∂t)2]dxdy (13) 式中:
(I0,I1,I2)=Nk∑k=1∫hkhk−1ρ(k)(1,z,z2)dz ,ρ(k) 为第k层材料的密度。板发生振动屈曲时的外力功可以表示为
W=12∫Lcr0∫Lb0Nt(∂w∂x)2dxdy (14) 考虑Hamilton变分原理,即
δ∫t2t1(T−U+W)dt=0 (15) 将式(12)~式(14)代入式(15)并进行变分计算,可得
∂Nx∂x+∂Nxy∂x−I0∂2u0∂t2+I1∂3w0∂x∂t2=0 (16) ∂Ny∂y+∂Nxy∂y−I0∂2v0∂t2+I1∂3w0∂y∂t2=0 (17) ∂2Mx∂x2+∂2My∂y2−2∂2Mxy∂x∂y−Nt(∂2w0∂x2+∂2w1∂x2)=I0∂2w0∂t2+I1(∂3u0∂x∂t2+∂3v0∂x∂t2)−I2(∂4w0∂x2∂t2+∂4w0∂y2∂t2) (18) 对于正交各向异性正规对称正交铺设的复合材料板,其刚度矩阵满足[16]
D16=D26=0,A16=A26=0,Bij=0 (19) 根据 Kirchhoff 薄板理论及经典弹性理论,薄板中面在变形过程中没有伸长变形,将板的本构关系代入式(16)~式(18)中,略去含
u0 和v0 的项,得到复合材料板在面向阶跃荷载激励下的控制方程D11∂4w0∂x4+(2D12+4D66)∂4w0∂x2∂y2+D22∂4w0∂y4+Nt(∂2w0∂x2+∂2w1∂x2)−I0∂2w0∂t2+I2(∂4w0∂x2∂t2+∂4w0∂y2∂t2)=0 (20) 设三边简支和应力波传播到Lcr(
w0(Lcr,y,t)=w′0(Lcr,y,t)=0 )时的振型函数[17]为w0(x,y,t)=Rij[siniπxLcr+ii+1sin(i+1)πxLcr]sinjπyLbsin(ωt+φ) (21) 由屈曲模态确定的缺陷分布形式是板结构最有可能发生的屈曲形式,能够很好地确定结构的缺陷敏感性[18]。对于复合材料板在制造过程中出现的初始几何缺陷,引入屈曲模态的
ε 倍变形作为初始几何缺陷[19],可以表示为w1(x,y)=εRij[siniπxLcr+ii+1sin(i+1)πxLcr]sinjπyLb (22) 式中:i、j为屈曲模态阶数,
i,j=1,2,3,⋯ ;Rij为板的第(i, j)阶模态幅值;ε 表示初始几何缺陷系数。根据式(21)和式(22),利用棣莫弗公式对控制方程式(20)中的各项进行求导并化简,得到
D11(πLcr)4[i4+(i+1)4]sin(ωt+φ)+(2D12+4D66)(πLcr)2[i2+(i+1)2](jπLb)2sin(ωt+φ)+2D22(jπLb)4sin(ωt+φ)−Nt(πLcr)2[i2+(i+1)2][sin(ωt+φ)+ε]+2I0ω2sin(ωt+φ)+I2ω2{(πLcr)2[i2+(i+1)2]+2(jπLb)2}sin(ωt+φ)=0 (23) 根据式(23)可以得到N的表达式
N={D11(πLcr)4[i4+(i+1)4]+(2D12+4D66)(πLcr)2[i2+(i+1)2](jπLb)2+2D22(jπLb)4+2I0ω2+I2ω2{(πLcr)2[i2+(i+1)2]+2(jπLb)2}}sin(ωt+φ)(πLcr)2[i2+(i+1)2][sin(ωt+φ)+ε] (24) 板发生屈曲时,临界条件为
ω=0 [20],代入式(24)可得振动屈曲临界荷载为Ncr=D11(πLcr)2[i4+(i+1)4]sinφ[i2+(i+1)2](sinφ+ε)+(2D12+4D66)(jπLb)2sinφ(sinφ+ε)+2D22(j2πL2b)2L2crsinφ[i2+(i+1)2](sinφ+ε) (25) 2. 算例分析
利用MATLAB数值分析应力波未反射时初始几何缺陷、初相位、铺层角度、屈曲模态阶数、铺设厚度以及铺层层数对复合材料板振动屈曲临界荷载的影响,使用的材料参数见表1[21]。
图3显示了复合材料板的模态阶数i为1、2、3,j为1时的屈曲模态。当板的x方向模态增大时,x方向的屈曲模态第一峰值增大且波数增加,而y方向的屈曲模态呈正对称分布。模态阶数的增加使板振动的屈曲模态变得更复杂。
设置7组算例,分别以初始几何缺陷、初相位、铺层角度、x和y两个方向屈曲模态阶数、铺层层数及铺设厚度为变量进行算例分析,研究以上因素对板振动屈曲临界荷载的影响,算例参数见表2。
表 2 算例分析参数表Table 2. Example analysis parameter tableGroup Initial defect
coefficientOrder of mode Laying angle/(°) Initial phase Number of
layers laidThickness
of the plate/mx direction y direction A Variable i = 1 j = 1 [0, 0, 0, 0, 0] π/2 5 0.01 B 0.1 Variable j = 1 [0, 0, 0, 0, 0] π/2 5 0.01 C 0.1 i =1 Variable [0, 0, 0, 0, 0] π/2 5 0.01 D 0.1 i =1 j = 1 Variable π/2 5 0.01 E 0.1 i =1 j = 1 [0, 0, 0, 0, 0] Variable 5 0.01 F 0.1 i =1 j = 1 [0, 0, 0, 0, 0] π/2 Variable 0.01 G 0.1 i =1 j = 1 [0, 0, 0, 0, 0] π/2 5 Variable 将A组数据代入式(25)中,可以得到不同初始缺陷系数对复合材料板振动屈曲的影响,如图4所示。由Lcr-Ncr曲线可知:在应力波传播过程中,Ncr呈指数下降,分为敏感区和非敏感区。应力波在Lcr < 0.4 m区域传播时,Ncr的变化较陡峭,该区域为敏感区;应力波在Lcr > 0.4 m区域传播时,Ncr的变化趋于平缓,该区域为非敏感区,因此敏感分界点为0.4 m。当选取的初始缺陷系数增大时,临界荷载Ncr也随之增大。在敏感区,初始缺陷系数对临界荷载Ncr的影响较大,且随应力波传播呈减小趋势。此外,初始缺陷系数对非敏感区的影响较小。图4表明,初始几何缺陷系数越大,板越容易发生屈曲。
将B组数据代入式(25)中,可以得到不同x方向模态阶数对复合材料板振动屈曲的影响,如图5所示。由Lcr-Ncr曲线可知:当选取的x方向模态阶数增大时,临界荷载Ncr随之明显增大。在敏感区,x方向模态阶数对临界荷载Ncr的影响很大,并随应力波的传播不断减小,到达非敏感区之后影响较小并趋于稳定。图5表明,x方向模态阶数的增加会显著增大板的屈曲临界荷载。
将C组数据代入式(25)中,可以得到不同的y方向模态阶数对复合材料板振动屈曲的影响,如图6所示。由Lcr-Ncr曲线可知:当选取的y方向模态阶数增大时,临界荷载Ncr也随之变大。在应力波传播过程中,在敏感区y方向模态阶数对临界载荷基本没有影响,而在非敏感区有极小的影响。图6表明,y方向模态阶数的变化对板屈曲临界荷载基本没有影响。
将D组数据代入式(25)中,得到不同铺层角度对复合材料板振动屈曲的影响,如图7所示。由Lcr-Ncr曲线可知:在敏感区,不同的铺设角度对临界荷载Ncr的影响较大,且随应力波的传播不断减小,到达非敏感区后趋于稳定。图7表明,铺层角度小的单层板的层数越多,板的临界屈曲荷载越大,说明复合材料板的铺设角度直接影响板的屈曲临界荷载。
将E组数据代入式(25)中,得到不同初相位对复合材料板振动屈曲的影响,如图8所示。由Lcr-Ncr曲线可知:振型函数的初相位越大,对应的临界荷载越大。在敏感区,振型函数的初相位对临界荷载Ncr的影响较小,且随应力波的传播不断减小;到达非敏感区之后,影响趋于平缓。图8表明,振型函数的初相位越大,板的屈曲临界荷载越大。
将F组数据代入式(25)中,得到不同铺层层数对复合材料板振动屈曲的影响,如图9所示。由Lcr-Ncr曲线可知:当按照不同层数铺设时,敏感区的临界荷载Ncr的变化较大,且随应力波的传播不断减小;到达非敏感区之后变化较小并趋于平缓。图9表明,对于厚度固定且对称铺设的板,当铺设层数达到7时,其屈曲荷载随层数增加趋于稳定。
将G组数据代入式(25)中,得到不同铺设厚度对复合材料板振动屈曲的影响,如图10所示。由Lcr-Ncr曲线可知:板的铺设厚度越大,对应的临界荷载越大。在敏感区,不同的板厚对临界荷载Ncr的影响很大,且随应力波的传播不断减小,到达非敏感区后趋于稳定。图10表明,复合材料板的铺设厚度将直接决定板的屈曲临界荷载。
3. 结 论
基于Kirchhoff薄板理论和Hamilton变分原理,建立了具有初始几何缺陷的四边简支复合材料板的振动控制方程。采用伽辽金法,选取符合边界条件的振型函数求解控制方程,得到屈曲临界载荷表达式。数值计算结果表明:应力波在未发生反射前的传播过程中,复合材料板的振动屈曲临界载荷随着临界长度的增大、铺设厚度的减小、初始几何缺陷系数的增大、振型函数初相位的减小而减小;复合材料板的各层铺层角度与荷载作用方向的夹角越小,屈曲临界载荷越大,当对称铺设层数达7层时,临界荷载趋于稳定。研究结果可为工程中复合材料板的结构设计与应用提供一定的参考。
-
表 1 状态方程参数
Table 1. Parameters of equation of state
Material S C0/(m·s–1) Γ ρ0/(kg⋅m−3) Tungsten alloy 1.23 4 040 1.67 17.6 Q345 Steel 1.49 4 569 2.17 7.83 表 2 钨合金的Steinberg-Guinan强度模型参数
Table 2. Steinberg-Guinan strength model parameters of tungsten alloy
G0/GPa Y0/GPa Tm/K G′p G′T/(MPa⋅K−1) β n Y′p 132 1.4 4 520 1.794 –40 1.3 0.1 0.019 027 表 3 Q345钢的Johnson-Cook强度模型参数
Table 3. Johnson-Cook strength model parameters of Q345 steel
A/GPa B/GPa n C m Tmelt/K T0/K G/GPa 0.374 0.795 7 0.454 5 0.015 86 0.885 6 1 759 300 80.47 表 4 实验与数值仿真结果
Table 4. Results of simulation and experiment
Method Residual projectile’s
kinetic energy/(km·s–1)Residual projectile’s
length/mmExperiment 2.945 12.510 Simulation 2.952 11.823 -
[1] 武强, 张庆明, 孙浩勇, 等. 超高速撞击下PTFE/Al含能材料薄板的载荷特性分析 [J]. 航天器环境工程, 2017, 34(1): 1–7. doi: 10.3969/j.issn.1673-1379.2017.01.001WU Q, ZHANG Q M, SUN H Y, et al. The loading characteristics of PTFE/Al energetic materialsunder hypervelocity impact [J]. Spacecraft Environment Engineering, 2017, 34(1): 1–7. doi: 10.3969/j.issn.1673-1379.2017.01.001 [2] 迟润强, 庞宝君, 何茂坚. 球形弹丸超高速正撞击薄板破碎状态实验研究 [J]. 爆炸与冲击, 2009, 29(3): 231–236. doi: 10.3321/j.issn:1001-1455.2009.03.002CHI R Q, PANG B J, HE M J. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hypervelocity [J]. Explosion and Shock Waves, 2009, 29(3): 231–236. doi: 10.3321/j.issn:1001-1455.2009.03.002 [3] 曲广吉, 韩增尧. 空间碎片超高速撞击动力学建模与数值仿真技术 [J]. 中国空间科学技术, 2002(5): 26–30. doi: 10.3321/j.issn:1000-758X.2002.05.005QU G J, HAN Z Y. Dynamical modeling and numerical simulation of hypervelocity space debris impact [J]. Chinese Space Science and Technology, 2002(5): 26–30. doi: 10.3321/j.issn:1000-758X.2002.05.005 [4] 张伟, 庞宝君, 贾斌, 等. 弹丸超高速撞击防护屏碎片云数值模拟 [J]. 高压物理学报, 2004, 18(1): 47–52. doi: 10.3969/j.issn.1000-5773.2004.01.009ZHANG W, PANG B J, JIA B, et al. Numerical simulation of debris cloud produced by hypervelocity impact of projectile on bumper [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 47–52. doi: 10.3969/j.issn.1000-5773.2004.01.009 [5] 童宗保, 王金相, 彭楚才. 2~3km/s初速下球形破片对金属薄靶的侵彻效应分析 [J]. 科学技术与工程, 2014, 14(33): 215–219. doi: 10.3969/j.issn.1671-1815.2014.33.040TONG Z B, WANG J X, PENG C C. Analysis of the effect of the circle fragment penetration the tine metal target with the initial velocity between 2km/s and 3km/s [J]. Science Technology and Engineering, 2014, 14(33): 215–219. doi: 10.3969/j.issn.1671-1815.2014.33.040 [6] FA W K, JIE H. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact [J]. Acta Astronautica, 2016(127): 553–560. [7] SHI C L, YI L. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set [J]. International Journal of Impact Engineering, 2013(56): 27–31. [8] 唐恩凌, 徐名扬, 张庆明. 超高速撞击厚靶过程的能量分配研究 [J]. 固体力学学报, 2016, 37(2): 152–160.TANG E L, XU M Y, ZHANG Q M. Study on partitioning of energy in hypervelocity impact on thick target [J]. Chinese Journal o f Solid Mechanics, 2016, 37(2): 152–160. [9] Thomson W T. An approximate theory of armor penetration [J]. Journal of Applied Physics, 1955, 26: 80–82. doi: 10.1016/0734-743X(95)00023-4 [10] WOODWARD R L. The penetration of metal targets by conical projectiles [J]. International Journal of Mechanical Sciences, 1978, 20: 349–359. doi: 10.1016/0020-7403(78)90038-3 [11] WIERZBICKI T. Petalling of plates under explosive and impact loading [J]. International Journal of Impact Engineering, 1999, 22: 935–954. doi: 10.1016/S0734-743X(99)00028-7 [12] WANG B, XIONG J. Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact [J]. Materials and Design, 2013(50): 140–148. [13] 汪庆桃, 吴克刚, 陈志阳. 圆柱形长杆超高速正碰撞薄板结构破碎效应 [J]. 振动与冲击, 2017, 36(5): 53–60.WANG Q T, WU K G, CHEN Z Y. Fragmentation effect of a long cylindrical rod with a hypervelocity normally impacting a thin plate structure [J]. Journal of Vibration and Shock, 2017, 36(5): 53–60. [14] 汪庆桃, 吴克刚, 李必红, 等. 球形弹丸超高速碰撞破碎特性 [J]. 振动与冲击, 2014, 33(22): 46–50.WANG Q T, WU K G, LI B H, et al. Fragmentation properties of spherical projectiles impacting at hypervelocity [J]. Journal of Vibration and Shock, 2014, 33(22): 46–50. [15] 陈鸿, 周智炫, 黄洁. 带迎角钨杆斜侵彻铝板数值仿真研究 [J]. 实验流体力学, 2014, 28(2): 85–89. doi: 10.11729/syltlx2014pz29CHEN H, ZHOU Z X, HUANG J. Numerical simulation study on tungsten rod oblique penetrating aluminum plate with attack angle [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 85–89. doi: 10.11729/syltlx2014pz29 [16] 王芳, 李磊, 金俊. 空间碎片超高速碰撞的数值方法研究 [J]. 中国安全科学学报, 2006, 16(5): 26–30. doi: 10.3969/j.issn.1003-3033.2006.05.005WANG F, LI L, JIN J. Study on numerical simulation of hypervelocity impact of debris in outer space [J]. China Safety Science Journal, 2006, 16(5): 26–30. doi: 10.3969/j.issn.1003-3033.2006.05.005 -