结合能的新势函数对高压稠密惰性元素压缩特性的影响

郑兴荣

郑兴荣. 结合能的新势函数对高压稠密惰性元素压缩特性的影响[J]. 高压物理学报, 2019, 33(6): 062201. doi: 10.11858/gywlxb.20190731
引用本文: 郑兴荣. 结合能的新势函数对高压稠密惰性元素压缩特性的影响[J]. 高压物理学报, 2019, 33(6): 062201. doi: 10.11858/gywlxb.20190731
ZHENG Xingrong. A Novel Expression of Cohesive Energy Contributions to the Highly Compressed Characteristic for Rare-Gas Solids[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 062201. doi: 10.11858/gywlxb.20190731
Citation: ZHENG Xingrong. A Novel Expression of Cohesive Energy Contributions to the Highly Compressed Characteristic for Rare-Gas Solids[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 062201. doi: 10.11858/gywlxb.20190731

结合能的新势函数对高压稠密惰性元素压缩特性的影响

doi: 10.11858/gywlxb.20190731
基金项目: 甘肃省教育厅项目(2019A-112);国家自然科学基金(11565018);陇东学院博士基金(XYBY1601)
详细信息
    作者简介:

    郑兴荣(1986-),男,硕士,讲师,主要从事凝聚态理论物理与材料计算、团簇结构研究. E-mail:zhengxingrong2006@163.com

  • 中图分类号: O521.2; O561.1

A Novel Expression of Cohesive Energy Contributions to the Highly Compressed Characteristic for Rare-Gas Solids

  • 摘要: 基于量子理论和原子团簇理论,运用多体展开方法和第一性原理的从头算方法,提出了一种计算稠密惰性元素(氦、氖、氩和氪)原子结合能的新势函数,运用新公式研究了结合能对高压稠密惰性元素高压压缩特性的影响。此公式引入了一个物理参量$\beta $(其值为0.5),使得势函数的表达形式更加简单、准确。对比结果表明,结合能的新势函数能够准确地描述多体相互作用对结合能的贡献,且平均相对误差在5%以内。结合能的新势函数对压缩特性的影响在当前实验压强范围内(氦60 GPa、氖238 GPa、氩114 GPa、氪128 GPa)做出了令人满意的描述,且与实验值及理论计算结果基本完全吻合,平均相对误差在3%以内。最后,以固氩的压强数据为例,验证了势函数的准确性。该势函数不仅适用于更宽密度和更高压强范围,而且对所有惰性元素原子各种状态的结合能、高压压缩特性、定容比热容、熔化曲线和弹性模量的研究具有重要的指导意义。

     

  • 图  U2(M)、Vn(M)和E(M)三者的关系(曲线OE表示函数f(x),虚线OG代表U2(M)x

    Figure  1.  The correlations among U2(M), Vn(M), and E(M) (The curve line OE represents function f(x), and the dash line OG describes U2(M)x.)

    图  稠密惰性元素原子结合能的比较

    Figure  2.  Comparison of the cohesive energy for rare-gas solids

    图  稠密惰性元素原子的高压压缩特性的比较

    Figure  3.  Comparison of the compressibility of rare-gas solids

    表  1  固氩的压强分量

    Table  1.   The pressure components of solid argon

    RV/(cm3·mol–1)P/GPaError/%
    Exp.[24]Ab initio[11]Eq.(10)
    2.405.887237.61248.95247.043.97
    2.456.262194.11204.44200.723.41
    2.506.653158.51167.59163.253.00
    2.557.061129.38137.12132.812.65
    2.607.484105.53111.96107.982.32
    2.657.92486.0291.2387.701.95
    2.708.38170.0674.1871.121.51
    2.758.85657.0060.2057.571.00
    2.809.34846.3448.7546.490.32
    2.859.85737.6239.4137.54–0.21
    2.9010.38530.5131.8030.31–0.66
    2.9510.93224.7125.6224.65–0.24
    3.0011.49719.9920.6019.79–1.00
    下载: 导出CSV
  • [1] TAN L, ZHANG W, ZHANG F. Research on energy efficiency system of new energy vehicle electric drive [C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019, 223(1): 012028.
    [2] NADAÏ A, LABUSSIÈRE O. New energy resources in the making [J]. Energy Transitions, 2018, 256: 49.
    [3] MYATT P T, DHAM A K, CHANDRASEKHAR P, et al. A new empirical potential energy function for Ar2 [J]. Molecular Physics, 2018, 116(12): 1598–1623. doi: 10.1080/00268976.2018.1437932
    [4] GORBENKO I I, TROITSKAYA E P, PILIPENKO E A. Elastic properties of compressed rare-gas crystals in a model of deformable atoms [J]. Physics of the Solid State, 2017, 59(1): 132–140. doi: 10.1134/S1063783417010097
    [5] BONNET P. Equation of state for solid rare gases and alkali metals under pressure [J]. Physica B: Condensed Matter, 2016, 492: 50–54. doi: 10.1016/j.physb.2016.04.006
    [6] 田春玲, 刘福生, 蔡灵仓, 等. 多体相互作用对高压固氦状态方程的影响 [J]. 物理学报, 2006, 55(2): 764–769. doi: 10.3321/j.issn:1000-3290.2006.02.051

    TIAN C L, LIU F S, CAI L C, et al. Many-body contributions to the equation of state for highly compressed solid helium [J]. Acta Physica Sinica, 2006, 55(2): 764–769. doi: 10.3321/j.issn:1000-3290.2006.02.051
    [7] 郑兴荣. 多体相互作用对固氖物态方程的影响 [J]. 陇东学院学报, 2015, 26(5): 17. doi: 10.3969/j.issn.1674-1730.2015.05.005

    ZHENG X R. On the effect of multi-body interactions on the equation of state of solid neon [J]. Journal of Longdong University, 2015, 26(5): 17. doi: 10.3969/j.issn.1674-1730.2015.05.005
    [8] ABBASPOUR M, BORZOUIE Z. Equation of state, elastic constants, and melting curve of solid neon using an effective two-body potential including quantum corrections [J]. Fluid Phase Equilibria, 2014, 379: 167–174. doi: 10.1016/j.fluid.2014.07.026
    [9] SCHMIDT K M, VASQUEZ V R. A generalized method for the inversion of cohesive energy curves from isotropic and anisotropic lattice expansions [J]. Physical Chemistry Chemical Physics, 2015, 17(36): 23423–23437. doi: 10.1039/C5CP03792A
    [10] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133. doi: 10.1103/PhysRev.140.A1133
    [11] TIAN C L, LIU F S, CAI L C, et al. Ab initio calculations of many-body interactions for compressed solid argon [J]. The Journal of Chemical Physics, 2015, 143(17): 174506. doi: 10.1063/1.4935050
    [12] TIAN C L, WU N, LIU F S, et al. Four-body interaction energy for compressed solid krypton from quantum theory [J]. The Journal of Chemical Physics, 2012, 137(4): 044108. doi: 10.1063/1.4737183
    [13] AZIZ R. Accurate intermolecular potential for neon [J]. High Temperature High Pressures, 1980, 12(5): 565–577.
    [14] AZIZ R A, SLAMAN M J. The Ne-Ne interatomic potential revisited [J]. Chemical Physics, 1989, 130(1/2/3): 187–194.
    [15] AZIZ R A, SLAMAN M J. The argon and krypton interatomic potentials revisited [J]. Molecular Physics, 1986, 58(4): 679–697. doi: 10.1080/00268978600101501
    [16] FREIMAN Y A, TRETYAK S M. Many-body interactions and high-pressure equations of state in rare-gas solids [J]. Low Temperature Physics, 2007, 33(6): 545–552. doi: 10.1063/1.2746249
    [17] LOUBEYRE P. Three-body-exchange interaction in dense rare gases [J]. Physical Review B, 1988, 37(10): 5432. doi: 10.1103/PhysRevB.37.5432
    [18] LOUBEYRE P, LETOULLEC R, PINCEAUX J P, et al. Equation of state and phase diagram of solid 4He from single-crystal X-ray diffraction over a large P-T domain [J]. Physical Review Letters, 1993, 71(14): 2272. doi: 10.1103/PhysRevLett.71.2272
    [19] 经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1999: 31.

    JING F Q. Introduction to experimental equation of state [M]. Beijing: Science Press, 1999: 31.
    [20] BERNE B J. Statistical mechanics [M]. New York: Plenum Press, 1977.
    [21] 武娜, 田春玲, 刘福生, 等. 固氖高压物态方程的量子理论计算 [J]. 高压物理学报, 2012, 26(1): 41–47. doi: 10.11858/gywlxb.2012.01.006

    WU N, TIAN C L, LIU F S, et al. Equation of state of solid neon from quantum calculation [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 41–47. doi: 10.11858/gywlxb.2012.01.006
    [22] 郑兴荣, 陈海军, 高晓红, 等. 高压固氩物态方程的量子理论计算 [J]. 高压物理学报, 2017, 31(4): 396–402. doi: 10.11858/gywlxb.2017.04.007

    ZHENG X R, CHEN H J, GAO X H, et al. Quantum calculation for equation of state of compressed solid argon [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 396–402. doi: 10.11858/gywlxb.2017.04.007
    [23] TANGE Y, NISHIHARA Y, TSUCHIYA T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments [J]. Journal of Geophysical Research: Solid Earth, 2009, 114: B03208.
    [24] JEPHCOAT A P. Rare-gas solids in the Earth’s deep interior [J]. Nature, 1998, 393(6683): 355. doi: 10.1038/30712
    [25] SCHWERDTFEGER P, HERMANN A. Equation of state for solid neon from quantum theory [J]. Physical Review B, 2009, 80(6): 064106. doi: 10.1103/PhysRevB.80.064106
    [26] SCHMIDT M W, BALDRIDGE K K, BOATZ J A, et al. General atomic and molecular electronic structure system [J]. Journal of Computational Chemistry, 1993, 14(11): 1347–1363. doi: 10.1002/jcc.540141112
    [27] HEMLEY R J, ZHA C S, JEPHCOAT A P, et al. X-ray diffraction and equation of state of solid neon to 110 GPa [J]. Physical Review B, 1989, 39(16): 11820. doi: 10.1103/PhysRevB.39.11820
    [28] DEWAELE A, DATCHI F, LOUBEYRE P, et al. High pressure-high temperature equations of state of neon and diamond [J]. Physical Review B, 2008, 77(9): 094106. doi: 10.1103/PhysRevB.77.094106
    [29] FINGER L W, HAZEN R M, ZOU G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature [J]. Applied Physics Letters, 1981, 39(11): 892–894. doi: 10.1063/1.92597
    [30] TAKEMURA K, WATANUKI T, OHWADA K, et al. Powder X-ray diffraction study of Ne up to 240 GPa [C]//Journal of Physics: Conference Series. IOP Publishing, 2010, 215(1): 012017.
    [31] ERRANDONEA D, BOEHLER R, JAPEL S, et al. Structural transformation of compressed solid Ar: an X-ray diffraction study to 114 GPa [J]. Physical Review B, 2006, 73(9): 092106. doi: 10.1103/PhysRevB.73.092106
    [32] POLIAN A, BESSON J M, GRIMSDITCH M, et al. Solid krypton: equation of state and elastic properties [J]. Physical Review B, 1989, 39(2): 1332. doi: 10.1103/PhysRevB.39.1332
    [33] ANDERSON M S, SWENSON C A. Experimental equations of state for the rare gas solids [J]. Journal of Physics and Chemistry of Solids, 1975, 36(3): 145–162. doi: 10.1016/0022-3697(75)90004-9
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  9623
  • HTML全文浏览量:  3552
  • PDF下载量:  29
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-03-22

目录

    /

    返回文章
    返回