A Novel Expression of Cohesive Energy Contributions to the Highly Compressed Characteristic for Rare-Gas Solids
-
摘要: 基于量子理论和原子团簇理论,运用多体展开方法和第一性原理的从头算方法,提出了一种计算稠密惰性元素(氦、氖、氩和氪)原子结合能的新势函数,运用新公式研究了结合能对高压稠密惰性元素高压压缩特性的影响。此公式引入了一个物理参量
$\beta $ (其值为0.5),使得势函数的表达形式更加简单、准确。对比结果表明,结合能的新势函数能够准确地描述多体相互作用对结合能的贡献,且平均相对误差在5%以内。结合能的新势函数对压缩特性的影响在当前实验压强范围内(氦60 GPa、氖238 GPa、氩114 GPa、氪128 GPa)做出了令人满意的描述,且与实验值及理论计算结果基本完全吻合,平均相对误差在3%以内。最后,以固氩的压强数据为例,验证了势函数的准确性。该势函数不仅适用于更宽密度和更高压强范围,而且对所有惰性元素原子各种状态的结合能、高压压缩特性、定容比热容、熔化曲线和弹性模量的研究具有重要的指导意义。Abstract: Based on quantum theory and atomic cluster theory, using many-body expansion method and the ab initio method, a novel expression is presented for calculating the cohesive energy of rare-gas solids (RGS) (RGS=He, Ne, Ar, Kr) and studying the cohesive energy contribution to the highly compressed characteristics for RGS. In this expression, we introduce a new coefficient$\beta $ =0.5, which makes the expression of potential function simple and accurate. Compared with previous results, it is necessary to obtain a new cohesive energy expression that can describe accurately the many-body interaction contribution to cohesive energy, and the mean relative errors are within 5%. The expression can also be applied to calculate the compressibility of solid helium, neon, argon and krypton in the present experimental pressure range (He 60 GPa, Ne 238 GPa, Ar 114 GPa, Kr 128 GPa), and the numerical results are consistent with the recent experiment results and ab initio calculation results with the mean relative errors of no more than 5%. Finally, an application in solid argon verifies the accuracy of the potential expression. The expression not only can be applicable in a wider density and pressure range, but also all rare gas systems. In addition, it has important guiding significance for studying the high-pressure compression, specific heat, melting curve and elastic modulus of rare-gas solids. -
表 1 固氩的压强分量
Table 1. The pressure components of solid argon
R/Å V/(cm3·mol–1) P/GPa Error/% Exp.[24] Ab initio[11] Eq.(10) 2.40 5.887 237.61 248.95 247.04 3.97 2.45 6.262 194.11 204.44 200.72 3.41 2.50 6.653 158.51 167.59 163.25 3.00 2.55 7.061 129.38 137.12 132.81 2.65 2.60 7.484 105.53 111.96 107.98 2.32 2.65 7.924 86.02 91.23 87.70 1.95 2.70 8.381 70.06 74.18 71.12 1.51 2.75 8.856 57.00 60.20 57.57 1.00 2.80 9.348 46.34 48.75 46.49 0.32 2.85 9.857 37.62 39.41 37.54 –0.21 2.90 10.385 30.51 31.80 30.31 –0.66 2.95 10.932 24.71 25.62 24.65 –0.24 3.00 11.497 19.99 20.60 19.79 –1.00 -
[1] TAN L, ZHANG W, ZHANG F. Research on energy efficiency system of new energy vehicle electric drive [C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019, 223(1): 012028. [2] NADAÏ A, LABUSSIÈRE O. New energy resources in the making [J]. Energy Transitions, 2018, 256: 49. [3] MYATT P T, DHAM A K, CHANDRASEKHAR P, et al. A new empirical potential energy function for Ar2 [J]. Molecular Physics, 2018, 116(12): 1598–1623. doi: 10.1080/00268976.2018.1437932 [4] GORBENKO I I, TROITSKAYA E P, PILIPENKO E A. Elastic properties of compressed rare-gas crystals in a model of deformable atoms [J]. Physics of the Solid State, 2017, 59(1): 132–140. doi: 10.1134/S1063783417010097 [5] BONNET P. Equation of state for solid rare gases and alkali metals under pressure [J]. Physica B: Condensed Matter, 2016, 492: 50–54. doi: 10.1016/j.physb.2016.04.006 [6] 田春玲, 刘福生, 蔡灵仓, 等. 多体相互作用对高压固氦状态方程的影响 [J]. 物理学报, 2006, 55(2): 764–769. doi: 10.3321/j.issn:1000-3290.2006.02.051TIAN C L, LIU F S, CAI L C, et al. Many-body contributions to the equation of state for highly compressed solid helium [J]. Acta Physica Sinica, 2006, 55(2): 764–769. doi: 10.3321/j.issn:1000-3290.2006.02.051 [7] 郑兴荣. 多体相互作用对固氖物态方程的影响 [J]. 陇东学院学报, 2015, 26(5): 17. doi: 10.3969/j.issn.1674-1730.2015.05.005ZHENG X R. On the effect of multi-body interactions on the equation of state of solid neon [J]. Journal of Longdong University, 2015, 26(5): 17. doi: 10.3969/j.issn.1674-1730.2015.05.005 [8] ABBASPOUR M, BORZOUIE Z. Equation of state, elastic constants, and melting curve of solid neon using an effective two-body potential including quantum corrections [J]. Fluid Phase Equilibria, 2014, 379: 167–174. doi: 10.1016/j.fluid.2014.07.026 [9] SCHMIDT K M, VASQUEZ V R. A generalized method for the inversion of cohesive energy curves from isotropic and anisotropic lattice expansions [J]. Physical Chemistry Chemical Physics, 2015, 17(36): 23423–23437. doi: 10.1039/C5CP03792A [10] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133. doi: 10.1103/PhysRev.140.A1133 [11] TIAN C L, LIU F S, CAI L C, et al. Ab initio calculations of many-body interactions for compressed solid argon [J]. The Journal of Chemical Physics, 2015, 143(17): 174506. doi: 10.1063/1.4935050 [12] TIAN C L, WU N, LIU F S, et al. Four-body interaction energy for compressed solid krypton from quantum theory [J]. The Journal of Chemical Physics, 2012, 137(4): 044108. doi: 10.1063/1.4737183 [13] AZIZ R. Accurate intermolecular potential for neon [J]. High Temperature High Pressures, 1980, 12(5): 565–577. [14] AZIZ R A, SLAMAN M J. The Ne-Ne interatomic potential revisited [J]. Chemical Physics, 1989, 130(1/2/3): 187–194. [15] AZIZ R A, SLAMAN M J. The argon and krypton interatomic potentials revisited [J]. Molecular Physics, 1986, 58(4): 679–697. doi: 10.1080/00268978600101501 [16] FREIMAN Y A, TRETYAK S M. Many-body interactions and high-pressure equations of state in rare-gas solids [J]. Low Temperature Physics, 2007, 33(6): 545–552. doi: 10.1063/1.2746249 [17] LOUBEYRE P. Three-body-exchange interaction in dense rare gases [J]. Physical Review B, 1988, 37(10): 5432. doi: 10.1103/PhysRevB.37.5432 [18] LOUBEYRE P, LETOULLEC R, PINCEAUX J P, et al. Equation of state and phase diagram of solid 4He from single-crystal X-ray diffraction over a large P-T domain [J]. Physical Review Letters, 1993, 71(14): 2272. doi: 10.1103/PhysRevLett.71.2272 [19] 经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1999: 31.JING F Q. Introduction to experimental equation of state [M]. Beijing: Science Press, 1999: 31. [20] BERNE B J. Statistical mechanics [M]. New York: Plenum Press, 1977. [21] 武娜, 田春玲, 刘福生, 等. 固氖高压物态方程的量子理论计算 [J]. 高压物理学报, 2012, 26(1): 41–47. doi: 10.11858/gywlxb.2012.01.006WU N, TIAN C L, LIU F S, et al. Equation of state of solid neon from quantum calculation [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 41–47. doi: 10.11858/gywlxb.2012.01.006 [22] 郑兴荣, 陈海军, 高晓红, 等. 高压固氩物态方程的量子理论计算 [J]. 高压物理学报, 2017, 31(4): 396–402. doi: 10.11858/gywlxb.2017.04.007ZHENG X R, CHEN H J, GAO X H, et al. Quantum calculation for equation of state of compressed solid argon [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 396–402. doi: 10.11858/gywlxb.2017.04.007 [23] TANGE Y, NISHIHARA Y, TSUCHIYA T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments [J]. Journal of Geophysical Research: Solid Earth, 2009, 114: B03208. [24] JEPHCOAT A P. Rare-gas solids in the Earth’s deep interior [J]. Nature, 1998, 393(6683): 355. doi: 10.1038/30712 [25] SCHWERDTFEGER P, HERMANN A. Equation of state for solid neon from quantum theory [J]. Physical Review B, 2009, 80(6): 064106. doi: 10.1103/PhysRevB.80.064106 [26] SCHMIDT M W, BALDRIDGE K K, BOATZ J A, et al. General atomic and molecular electronic structure system [J]. Journal of Computational Chemistry, 1993, 14(11): 1347–1363. doi: 10.1002/jcc.540141112 [27] HEMLEY R J, ZHA C S, JEPHCOAT A P, et al. X-ray diffraction and equation of state of solid neon to 110 GPa [J]. Physical Review B, 1989, 39(16): 11820. doi: 10.1103/PhysRevB.39.11820 [28] DEWAELE A, DATCHI F, LOUBEYRE P, et al. High pressure-high temperature equations of state of neon and diamond [J]. Physical Review B, 2008, 77(9): 094106. doi: 10.1103/PhysRevB.77.094106 [29] FINGER L W, HAZEN R M, ZOU G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature [J]. Applied Physics Letters, 1981, 39(11): 892–894. doi: 10.1063/1.92597 [30] TAKEMURA K, WATANUKI T, OHWADA K, et al. Powder X-ray diffraction study of Ne up to 240 GPa [C]//Journal of Physics: Conference Series. IOP Publishing, 2010, 215(1): 012017. [31] ERRANDONEA D, BOEHLER R, JAPEL S, et al. Structural transformation of compressed solid Ar: an X-ray diffraction study to 114 GPa [J]. Physical Review B, 2006, 73(9): 092106. doi: 10.1103/PhysRevB.73.092106 [32] POLIAN A, BESSON J M, GRIMSDITCH M, et al. Solid krypton: equation of state and elastic properties [J]. Physical Review B, 1989, 39(2): 1332. doi: 10.1103/PhysRevB.39.1332 [33] ANDERSON M S, SWENSON C A. Experimental equations of state for the rare gas solids [J]. Journal of Physics and Chemistry of Solids, 1975, 36(3): 145–162. doi: 10.1016/0022-3697(75)90004-9