铝铜药型罩射流与侵彻数值模拟

刘志跃 翟俊昭

刘志跃, 翟俊昭. 铝铜药型罩射流与侵彻数值模拟[J]. 高压物理学报, 2019, 33(6): 064107. doi: 10.11858/gywlxb.20190728
引用本文: 刘志跃, 翟俊昭. 铝铜药型罩射流与侵彻数值模拟[J]. 高压物理学报, 2019, 33(6): 064107. doi: 10.11858/gywlxb.20190728
LIU Zhiyue, ZHAI Junzhao. Numerical Simulation on the Performance of Shaped Charge with Explosively Welded Aluminum Copper Liner[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064107. doi: 10.11858/gywlxb.20190728
Citation: LIU Zhiyue, ZHAI Junzhao. Numerical Simulation on the Performance of Shaped Charge with Explosively Welded Aluminum Copper Liner[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064107. doi: 10.11858/gywlxb.20190728

铝铜药型罩射流与侵彻数值模拟

doi: 10.11858/gywlxb.20190728
基金项目: 北京理工大学爆炸与科学技术国家重点实验室面上项目(YBKT12-06)
详细信息
    作者简介:

    翟俊昭(1994-),男,硕士研究生,主要从事爆炸安全研究.E-mail: toshiakichia@gmail.com

    通讯作者:

    刘志跃(1965-),男,博士,副教授,主要从事冲击与爆炸安全研究. E-mail: zyliu@bit.edu.cn

  • 中图分类号: O385; E932.4

Numerical Simulation on the Performance of Shaped Charge with Explosively Welded Aluminum Copper Liner

  • 摘要: 为提高射流侵彻性能,根据聚能射流装置的射流形成特点,设计了爆炸复合铝铜金属体作为药型罩的聚能射流装置。此装置依据已有的锥角为42°的聚能装药紫铜药型罩改进而来。利用LS-DYNA软件中的MMALE多物质算法,对此装置的射流形成、侵彻金属靶体全过程进行数值模拟。在保持装药量不变的情况下,计算了当铝铜药型罩锥角分别为36°、38°、40°和42°时的射流形成及侵彻过程。结果表明:射流头部速度随着铝铜药型罩锥角的减小而增大;且锥角为38°时射流穿深最大。相比单纯金属铜药型罩情况,射流头部速度提高了13.2%,侵彻深度提高了14.5%。

     

  • 图  经典聚能射流装置

    Figure  1.  Prototype shaped charge device

    图  铝铜复合体药型罩聚能射流装置

    Figure  2.  Shaped charge with aluminum-copper welded liner

    图  射流装置及靶体布置有限元计算设定

    Figure  3.  Computational diagrams of shape charge and target arrangement

    图  纯铜药型罩在50 μs时的射流形态

    Figure  4.  Jet configuration from conical shaped charge with single copper liner at 50 μs instant

    图  纯铜药型罩射流侵彻深度

    Figure  5.  Penetration into steet target by jet from conical copper liner shaped charge

    图  不同锥角铝铜药型罩射流头部速度-时间变化

    Figure  6.  Variation of jet tip velocity versus time from shaped charge set-up with different liner apex angles

    图  锥角为38°时铝铜药型罩射流侵彻过程的计算结果

    Figure  7.  Penetration phases at shown time intervals by jets from 38° apex angle charge with aluminum-copper welded liner

    图  不同锥角铝铜药型罩射流侵彻深度-时间变化

    Figure  8.  Variation of jet penetration depth versus time by charge devices with different liner apex angles

    图  纯铜药型罩射流侵彻靶板前的速度分布

    Figure  9.  Jet velocity contour from charge with single copper liner

    图  10  锥角38°铝铜药型罩射流侵彻靶板前的速度分布

    Figure  10.  Jet velocity contour from charge with aluminum copper welded liner under 38° apex angle

    图  11  无结合强度铝铜复合板斜碰撞计算形貌

    Figure  11.  Computational results of the oblique collision by plates of aluminum copper without bonding

    图  12  结合良好的铝铜复合板斜碰撞计算形貌

    Figure  12.  Computational results of the oblique collision by plates of aluminum copper with strong bonding

    表  1  模型几何参数

    Table  1.   Geometrical parameters in shaped charge configuration

    δ/cm h/cm d/cm α/(°) b/cm
    0.2115.248.38425.86
     Note: δ, h, d, α, b are liner thickness, height of charge, diameter, apex angle, and top diameter, respectively.
    下载: 导出CSV

    表  2  Octol炸药爆轰性能及JWL参数[14]

    Table  2.   Detonation properties and JWL parameters of octol explosive[14]

    ρ0/(g·cm–3) D/(km·s–1)pCJ/GPa E0/(J·m–3)ω
    1.8218.4834.29.60.38
    A/GPaB/GPaC/GPaR1R2
    748.613.381.1674.501.20
     Note: ω, A, B, C, R1 and R2 are JWL EOS parameters; ρ0, D, pCJ and E0 are density, detonation velocity, CJ presure, and explosive energy per volume, respectively.
    下载: 导出CSV

    表  3  铝和铜的Grüneisen状态方程参数[16]

    Table  3.   Parameters in Grüneisen equation of state of aluminum and copper[16]

    Material ρ0/(g·cm–3)C0/(km·s–1) S Γ Troom/K cv/(J·kg–1·K–1)
    Aluminum2.785.391.3391.97300884
    Copper8.933.941.4892.02300383
     Note: S is constant; C0, Γ, Troom, cv are sound velocity, Grüneisen coefficient, room temperature, and specific heat capacity at constant volume, respectively.
    下载: 导出CSV

    表  4  铝和铜材料的Steinberg强度模型参数[17]

    Table  4.   Parameters in Steinberg strength model of aluminum and copper[17]

    Materialρ0/(g·cm–3)G0/GPaY0/GPaβn(${-G'_r/G_0}$)×103/K–1
    Aluminum2.7827.60.291250.100.62
    Copper8.9347.70.12360.450.38
     Note: β and n are constants; G0, Y0 and are shear modulus, yield strength, and ${G'_r}$ shear modulus per time derivative,respectively.
    下载: 导出CSV

    表  5  钢靶弹塑性随动硬化模型参数[19]

    Table  5.   Target material parameters in elastic-plastic-kinematic strength model[19]

    Material ρ0/(g·cm–3)Ep/GPa μY/GPaCePe/s–1ɛeff
    Steel7.832.070.30.011 16 50040.7
     Note: Pe, Ce and ɛeff are constants; Ep, μ and Y are platic modulus, Poisson’s ratio and yield strength, respectively.
    下载: 导出CSV

    表  6  纯铜药型罩射流侵彻计算和实验结果对比

    Table  6.   Comparison on computational and experimental results of jet and penetration by charge with single copper liner

    Jet head velocity/(km·s–1)Penetration depth/cm
    ExperimentThis calculationExperimentThis calculation
    8.308.2338.58–40.2341.15
    下载: 导出CSV

    表  7  不同锥角铝铜药型罩与纯铜药型罩射流计算结果对比

    Table  7.   Computational results on penetration by aluminum-copper liner with various apex angels

    Materialα/(°)Penetration depth/cm
    Cu42°41.15
    Al-Cu42°40.01
    40°44.23
    38°47.01
    36°44.02
    下载: 导出CSV

    表  8  锥角38°铝铜药型罩射流各分段速度分布及总动能

    Table  8.   Jet velocity values at different locations along its elongation and total jet kinetic energy from the charge with aluminum copper welded liner at 38° apex angle

    Portion iVelocity/(km·s–1)va/(km·s–1)r/cml/cmEvi/kJEv/kJ
    12.0–3.02.50.540.4511.50454.71
    23.0–7.05.00.286.09167.43454.71
    37.0–8.07.50.232.2995.58454.71
    48.0–9.68.80.175.74180.19454.71
    下载: 导出CSV

    表  9  单层铜药型罩射流各分段速度分布及总动能

    Table  9.   Jet velocity values at different locations along jet elongation and total jet kinetic energy from the charge with single copper liner

    Portion iVelocity/(km·s–1)va/(km·s–1)r/cml/cmEvi/kJEv/kJ
    12.0–3.02.50.581.2135.68414.13
    23.0–7.05.00.288.83242.76414.13
    37.0–8.07.50.213.40118.30414.13
    47.0–8.37.70.111.7517.38414.13
    下载: 导出CSV
  • [1] 谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–51. doi: 10.3321/j.issn:1001-1455.2008.01.009

    TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–51. doi: 10.3321/j.issn:1001-1455.2008.01.009
    [2] 戴兰宏. 工程科学前沿的拓荒者——郑哲敏 [J]. 力学进展, 2013, 43(3): 265–294. doi: 10.6052/1000-0992-13-033

    DAI L H. A pioneer in the frontier of engineering science—Zhe-Min Zheng [J]. Advances in Mechanics, 2013, 43(3): 265–294. doi: 10.6052/1000-0992-13-033
    [3] 龚柏林, 李明, 初哲, 等. 贫铀合金药型罩聚能破甲性能实验研究 [J]. 高压物理学报, 2018, 32(3): 035102.

    GONG B L, LI M, CHU Z, et al. Penetration performance of depleted uranium alloys liner [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035102.
    [4] 龚柏林, 初哲, 王长利, 等. 基于贫铀合金药型罩的聚能弹破甲后效实验研究 [J]. 高压物理学报, 2018, 32(6): 065104.

    GONG B L, CHU Z, WANG C L, et al. Experimental research on armor penetration aftereffect produced by depleted uranium alloys liner shaped charge [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065104.
    [5] 潘文强, 付代轩, 赖康华, 等. 含能射孔弹双层药型罩穿孔性能研究 [J]. 爆破器材, 2017, 46(2): 31. doi: 10.3969/j.issn.1001-8352.2017.02.007

    PAN W Q, FU D X, LAI K H, et al. Study on penetration performance of Bi-layer liner in energetic penetrating charge [J]. Explosive Materials, 2017, 46(2): 31. doi: 10.3969/j.issn.1001-8352.2017.02.007
    [6] DIL’’DIN Y M, KOLMAKOV A I, LADOV L V, et al. Effect of the width of the diffusion zone in multilayer lining of shaped charges on the shaping effect [J]. Combustion, Explosion and Shock Waves, 1980, 16(6): 660–663.
    [7] LAROCCA E W, STRIKE R. Method of making a bimetallic shaped charge liner: 4807795 [P]. 1989-02-28.
    [8] 臧涛成, 胡焕性, 邵琦. 破甲弹复合罩性能研究 [J]. 火炸药学报, 1998(4): 44–47.

    ZANG T C, HU H X, SHAO Q. The performance study of shaped charge liner [J]. Chinese Journal of Explosives & Propellants, 1998(4): 44–47.
    [9] 郑宇, 王晓鸣, 李文彬, 等. 双层药型罩侵彻半无限靶板的数值仿真研究 [J]. 南京理工大学学报(自然科学版), 2008, 32(3): 313–317.

    ZHENG Y, WANG X M, LI W B, et al. Numerical simulation on double-layered shaped charge liner penetration into semi-infinite target [J]. Journal of Nanjing University of Science and Technology, 2008, 32(3): 313–317.
    [10] 乔金超, 吴越, 贾磊朋. 双层线型药型罩侵彻靶体的数值分析 [J]. 兵工自动化, 2017, 36(9): 27–30.

    QIAO J C, WU Y, JIA L P. Numerical analysis of double-layer composite linear liner penetrate target [J]. Ordnance Industry Automation, 2017, 36(9): 27–30.
    [11] LS-DYNA Manual R.9448 [CP]. Livermore Software Technology Corporation, 2018.
    [12] DIPERSIO R, SIMON J, MERENDINO A B. Penetration of shaped-charge jets into metallic targets [R]. Maryland: Ballistics Research Laboratory, 1965.
    [13] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: Lawrence Livermore National Laboratory Report, 1968.
    [14] DOBRATZ B M, CRAWFORD P C. LLNL explosive handbook [M]. California: U.S. Government Printing Office, 1987: 8–22.
    [15] MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, 1994: 124.
    [16] KATAYAMA M. Numerical and experimental study on the shaped charge for space debris assessment [J]. Acta Astronautica, 2001, 48(5): 363–372.
    [17] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [18] KRIEG R D, KEY S W. Implementation of a time dependable plasticity theory into structural computer programs, constitutive of equations in viscoplasticity: computational and engineering aspects [M]. New York: American Society of Mechanical Engineers, 1976: 125–137.
    [19] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显示动力分析 [M]. 2版. 北京: 清华大学出版社, 2005: 313–326.

    SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 313–326.
  • 加载中
图(12) / 表(9)
计量
  • 文章访问数:  6368
  • HTML全文浏览量:  2908
  • PDF下载量:  47
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-03-15

目录

    /

    返回文章
    返回