[1] |
MEYERS M A. 材料的动力学行为 [M]. 张庆明等, 译. 北京: 国防工业出版社, 2006: 1–4.
|
[2] |
BAI Y L, WANG H Y, XIA M F, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales [J]. Applied Mechanics Reviews, 2005, 58(6): 372–388. doi: 10.1115/1.2048654
|
[3] |
HIRTH J P, LOTHE J. Theory of dislocations [M]. New York: John Wiley and Sons, 1982: 3.
|
[4] |
LOVE A E H. A treatise on the mathematical theory of elasticity [M]. Cambridge: Cambridge University Press, 1927.
|
[5] |
OROWAN E. Die mechanischen festigkeitseigenschaften und die realstruktur der kristalle [J]. Zeitschrift für Kristallographie, 1934, 89(605): 634.
|
[6] |
王礼立. 应力波基础[M]. 第2版. 北京:国防工业出版社, 2010: 1–4.
|
[7] |
BULATOV V V, CAI W. Computer simulations of dislocations [M]. Oxford: Oxford University Press, 2006.
|
[8] |
MARKENSCOFF X, CLIFTON R J. The nonuniformly moving edge dislocation [J]. Journal of the Mechanics, Physics and Solids, 1981, 29(3): 253–262. doi: 10.1016/0022-5096(81)90029-6
|
[9] |
LAZAR M. On the elastic fields produced by non-uniformly moving dislocations: a revisit [J]. Philosophical Magazine, 2011, 91(25): 3327–3342. doi: 10.1080/14786435.2011.579584
|
[10] |
GURRUTXAGA-LERMA B, BALINT D S, DINI D. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics [J]. Physical Review Letters, 2015, 114: 174301. doi: 10.1103/PhysRevLett.114.174301
|
[11] |
CAI W. Atomistic and mesoscale modeling of dislocation mobility [D]. Cambridge: Massachusetts Institute of Technology, 2001.
|
[12] |
GHONIEM N M, TONG S H, SUN L Z. Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation [J]. Physical Review B: Condensed Matter, 2000, 61(2): 913–927. doi: 10.1103/PhysRevB.61.913
|
[13] |
ZBIB H M, RUBIA T D D L. A multiscale model of plasticity [J]. International Journal of Plasticity, 2002, 18(9): 1133–1163. doi: 10.1016/S0749-6419(01)00044-4
|
[14] |
GIESSEN E, NEEDLEMAN A. Discrete dislocation plasticity: a simple planar model [J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(5): 689–735. doi: 10.1088/0965-0393/3/5/008
|
[15] |
KUBIN L P, CANOVA G, CONDAT M, et al. Dislocation microstructures and plastic flow: a 3D simulation [J]. Solid State Phenomena, 1992(23/24): 455–472.
|
[16] |
DEVINCRE B, MADEC R, MONNET G, et al. Modeling crystal plasticity with dislocations dynamics simulations: the ‘microMegas’ code [M]// THOMAS O, PONCHET A, FOREST S. Mechanics of Nano-Objects. Paris: Presses des Mines, 2011: 81–89.
|
[17] |
MADEC R, KUBIN L P. Dislocation strengthening in FCC metals and in BCC metals at high temperatures [J]. Acta Materilia, 2017, 126: 166–173. doi: 10.1016/j.actamat.2016.12.040
|
[18] |
KOCK U F. Laws for work-hardening and low-temperature creep [J]. Journal of Engineering Materials and Technology, 1976, 98(1): 76–85. doi: 10.1115/1.3443340
|
[19] |
ZAISER M, NIKITAS N, HOCHRAINER T, et al. Modelling size effects using 3D density-based dislocation dynamics [J]. Philosophical Magazine, 2007, 87: 11–21. doi: 10.1080/14786430600863047
|
[20] |
BARTON N R, BERNIER J V, BECKER R, et al. A multiscale strength model for extreme loading conditions [J]. Journal of Applied Physics, 2011, 109(7): 073501. doi: 10.1063/1.3553718
|
[21] |
JHONSTON W G, GILMAN J J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals [J]. Journal of Applied Physics, 1959, 30(2): 129. doi: 10.1063/1.1735121
|
[22] |
MARIAN J, CAI W, BULATOV V V. Dynamic transition from smooth to rough to twinning in dislocation motion [J]. Nature Materials, 2004, 3: 158–163. doi: 10.1038/nmat1072
|
[23] |
ARMSTRONG R W, ARNOLD W, ZERILLI F J. Dislocation mechanics of copper and iron in high rate of deformation tests [J]. Journal of Applied Physics, 2009, 105(2): 023511. doi: 10.1063/1.3067764
|
[24] |
MEYERS M A, JARMAKANI H, BRINGA E M, et al. Dislocations in shock compression and release [M]// HIRTH J P, KUBIN L. Dislocations in Solids. The Netherlands: North-Holland, 2009: 91-197.
|
[25] |
AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates [J]. International Journal of Plasticity, 2011, 27(1): 1–24. doi: 10.1016/j.ijplas.2010.03.002
|
[26] |
FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metall, 1988, 36(1): 81–83. doi: 10.1016/0001-6160(88)90030-2
|
[27] |
KANEL G I. Unusual behavior of usual materials in shock waves [J]. Journal of Physics: Conference Series, 2014, 500: 012001. doi: 10.1088/1742-6596/500/1/012001
|
[28] |
GAO C Y, ZHANG L C. Constitutive modeling of plasticity of fcc metals under extremely high strain rates [J]. International Journal of Plasticity, 2012, 32/33: 121–133. doi: 10.1016/j.ijplas.2011.12.001
|
[29] |
FAN Y, OSETSKY Y N, YIP S, et al. Onset mechanism of strain-rate-induced flow stress upturn [J]. Physical Revivew Letters, 2012, 109(13): 135503. doi: 10.1103/PhysRevLett.109.135503
|
[30] |
KANEL G I, RAZORENOV S V, BAUMUNG K, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. Journal of Applied Physics, 2001, 90(1): 136. doi: 10.1063/1.1374478
|
[31] |
ZARETSKY E B, KANEL G I. Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression [J]. Journal of Applied Physics, 2012, 112(7): 073504. doi: 10.1063/1.4755792
|
[32] |
ZARETSKY E B, KANEL G I. Response of copper to shock-wave loading at temperatures up to melting point [J]. Journal of Applied Physics, 2013, 114(8): 083511. doi: 10.1063/1.4819328
|
[33] |
KANEL G I, GARKUSHIN G V, SAVINYKH A S, et al. Shock response of magnesium single crystals at normal and elevated temperatures [J]. Journal of Applied Physics, 2014, 116(14): 143504. doi: 10.1063/1.4897555
|
[34] |
ZARETSKY E B, KANEL G I. Plastic flow in shock-loaded silver at strain rates from 104 s–1 to 107 s–1 and temperatures from 296 K to 1233 K [J]. Journal of Applied Physics, 2011, 110(7): 073502. doi: 10.1063/1.3642989
|
[35] |
ZARETSKY E B, KANEL G I. Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. non-monotonous decay of the elastic wave in vanadium [J]. Journal of Applied Physics, 2014, 115(24): 243502. doi: 10.1063/1.4885047
|
[36] |
RAZORENOV S V, ZARETSKY E B, SAVINYKH A S. The spall strength and Hugoniot elastic limit of mono crystalline and polycrystalline copper near melting temperature [J]. Journal of Physics: Conference Series, 2014, 500: 112053. doi: 10.1088/1742-6596/500/11/112053
|
[37] |
KRASNIKOV V S, MAYER A E, YALOVETS A P. Dislocation based high rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations [J]. International Journal of Plasticity, 2011, 27(8): 1294–1308. doi: 10.1016/j.ijplas.2011.02.008
|
[38] |
BEÑAT GURRUTXAGA-LERMA, BALINT D S, DINI D, et al. The effect of temperature on the elastic precursor decay in shock loaded FCC aluminum and BCC iron [J]. International Journal of Plasticity, 2017, 96: 135–155. doi: 10.1016/j.ijplas.2017.05.001
|
[39] |
SWEGLE J W, GRADY D E. Shock viscosity and the prediction of shock wave rise times [J]. Journal of Applied Physics, 1995, 58(2): 692–701.
|
[40] |
CROWHURST J C, ARMSTRONG M R, KNIGHT K B, et al. Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold [J]. Physical Review Letters, 2011, 107(14): 144302. doi: 10.1103/PhysRevLett.107.144302
|
[41] |
CAO B Y, LASSILA D H, SCHNEIDER M S, et al. Effect of shock compression method on the defect substructure in monocrystalline copper [J]. Materials Science and Engineering A, 2005, 409(1/2): 270–281.
|
[42] |
JARMAKANI H N, BRINGA E M, ERHART P, et al. Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals [J]. Acta Materilia, 2008, 56(19): 5584–5604. doi: 10.1016/j.actamat.2008.07.052
|
[43] |
LIPKIN J, ASAY J R. Reshock and release of shock-compressed 6061-T6 aluminum [J]. Journal of Applied Physics, 1977, 48(1): 182–189. doi: 10.1063/1.323306
|
[44] |
ASAY J R, LIPKIN J. Self-consistent technique for estimating the dynamic yield strength of a shock-loaded material [J]. Journal of Applied Physics, 1978, 49(7): 4242–4247. doi: 10.1063/1.325340
|
[45] |
俞宇颖. 强冲击载荷作用下LY12铝合金的准弹性卸载特性及层裂研究 [D]. 绵阳: 中国工程物理研究院, 2006: 73–80.YU Y Y. Study on the quasi-elastic release behavior and spallation of LY12 aluminum alloy under strong loading [D]. Mianyang: China Academy of Engineering Physics, 2006: 73–80.
|
[46] |
COCHRAN S G, GUINAN M W. Bauschinger effect in uranium: ECRL-17105 [R]. 1976.
|
[47] |
JOHNSON J N, HIXSON R S, GRAY G T, et al. Quasielastic release in shock-compressed solids [J]. Journal of Applied Physics, 1992, 72(2): 429–441. doi: 10.1063/1.351871
|
[48] |
DWIVEDI S K, ASAY J R, GUPTA Y M. Two-dimensional mesoscale simulations of quasielastic reloading and unloading in shock compressed aluminum [J]. Journal of Applied Physics, 2006, 100(8): 083502. doi: 10.1063/1.2357640
|
[49] |
潘昊. 基于晶体塑性理论研究织构对材料动态性能的影响 [D]. 绵阳: 中国工程物理研究院, 2017.PAN H. Study on texture effect to dynamic behavior of material based on crystal plasticity theory [D]. Mianyang: China Academy of Engineering Physics, 2017.
|
[50] |
YAO S L, PEI X Y, YU J D, et al. A dislocation-based explanation of quasi-elastic release in shock loaded aluminum [J]. Journal of Applied Physics, 2017, 121(3): 035101. doi: 10.1063/1.4974055
|
[51] |
DING J L, ASAY J R, AO T. Modeling of the elastic precursor behavior and dynamic inelasticity of tantalum under ramp wave loading to 17 GPa [J]. Journal of Applied Physics, 2010, 107(8): 083508. doi: 10.1063/1.3373388
|
[52] |
BRINGA E M, ROSOLANKOVA K, RUDD R E, et al. Shock deformation of FCC metals on subnanosecond timescales [J]. Nature Materials, 2006, 5(10): 805–809. doi: 10.1038/nmat1735
|
[53] |
ASAY J R, FOWLES G R, GUPTA Y M. Determination of material relaxation properties from measurements on decaying elastic shock fronts [J]. Journal of Applied Physics, 1972, 43(2): 744–746. doi: 10.1063/1.1661195
|
[54] |
DUVALL G E. Stress waves in anelastic solids [M]. Berlin: Springer-Verlag, 1964:20.
|
[55] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculation [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
|
[56] |
EVERS L P, BREKELMANS W A M, GEERS M G D. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects [J]. International Journal of Solids and Structures, 2004, 41(18/19): 5209–5230.
|
[57] |
KAZMI B, MURR L E. Anomalous residual shock hardening in nickel and stainless steel at a short pulse duration [J]. Scripta Metallurgica, 1979, 13(11): 993–997. doi: 10.1016/0036-9748(79)90191-1
|
[58] |
BRINGA E M, CARO A, VICTORIA M, et al. The atomistic modeling of wave propagation in nanocrystals [J]. Journal of the Minerals, Metals and Materials Society, 2005, 57(9): 67–70. doi: 10.1007/s11837-005-0119-9
|
[59] |
GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 65(4): 1–12.
|
[60] |
DAVILA L P, ERHART P, BRINGA E M, et al. Atomistic modeling of shock-induced void collapse in copper [J]. Applied Physical Letters, 2005, 86(16): 161902. doi: 10.1063/1.1906307
|
[61] |
LUBARDA V A, SCHNEIDER M S, KALANTAR D H, et al. Void growth by dislocation emission [J]. Acta Materilia, 2004, 52(6): 1397–1408. doi: 10.1016/j.actamat.2003.11.022
|
[62] |
王海燕. 氦泡对延性金属材料静态和动态力学性质影响的研究 [D]. 成都: 四川大学, 2008.
|
[63] |
SHAO J L, WANG P, HE A M. Compression-induced stacking fault tetrahedral around He bubble in Al [J]. Journal of Applied Physics, 2011, 116: 163516.
|
[64] |
REISMAN D B, WOLFER W G, ELSHOLZ A, et al. Isentropic compression of irradiated stainless steel on the Z accelerator [J]. Journal of Applied Physics, 2003, 93(11): 8952–8957. doi: 10.1063/1.1571969
|
[65] |
WEERTMAN J. Moving dislocations in the shock front [M]// MEYERS M A, MURR L E. Shock Waves and High Strain Rate Phenomena in Metals, 1981: 469.
|
[66] |
GUMBSCH P, GAO H. Dislocations faster than the speed of sound [J]. Science, 1999, 283(5404): 965–968. doi: 10.1126/science.283.5404.965
|
[67] |
NOSENKO V, ZHDANOV S, MORFILL G. Supersonic dislocations observed in a plasma crystal [J]. Physical Review Letters, 2007, 99(2): 025002. doi: 10.1103/PhysRevLett.99.025002
|
[68] |
VOLGER T J. On measuring the strength of metals at ultrahigh strain rates [J]. Journal of Applied Physics, 2009, 106(5): 053530. doi: 10.1063/1.3204777
|
[69] |
ZARETSKY E B. Impact response of nickel in the 150–1150 K temperature range [J]. Journal of Applied Physics, 2009, 105: 093508. doi: 10.1063/1.3122523
|
[70] |
ZARETSKY E B, KANEL G I. Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures [J]. Journal of Applied Physics, 2015, 117(19): 195901. doi: 10.1063/1.4921356
|