基于位错动力学方法的动态塑性变形研究

姚松林 裴晓阳 于继东 俞宇颖 柏劲松 李平 吴强

姚松林, 裴晓阳, 于继东, 俞宇颖, 柏劲松, 李平, 吴强. 基于位错动力学方法的动态塑性变形研究[J]. 高压物理学报, 2019, 33(3): 030107. doi: 10.11858/gywlxb.20190727
引用本文: 姚松林, 裴晓阳, 于继东, 俞宇颖, 柏劲松, 李平, 吴强. 基于位错动力学方法的动态塑性变形研究[J]. 高压物理学报, 2019, 33(3): 030107. doi: 10.11858/gywlxb.20190727
YAO Songlin, PEI Xiaoyang, YU Jidong, YU Yuying, BAI Jingsong, LI Ping, WU Qiang. Overview of the Study of Dynamical Plastic Deformation Based on Dislocation Dynamics Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030107. doi: 10.11858/gywlxb.20190727
Citation: YAO Songlin, PEI Xiaoyang, YU Jidong, YU Yuying, BAI Jingsong, LI Ping, WU Qiang. Overview of the Study of Dynamical Plastic Deformation Based on Dislocation Dynamics Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030107. doi: 10.11858/gywlxb.20190727

基于位错动力学方法的动态塑性变形研究

doi: 10.11858/gywlxb.20190727
基金项目: 科学挑战专题(TZ2018001);国家自然科学基金(11532012)
详细信息
    作者简介:

    姚松林(1989-),男,学士,助理研究员,主要从事冲击动力学研究. E-mail: yaosl@caep.cn

    通讯作者:

    于继东(1981-),男,博士,副研究员,主要从事冲击动力学研究. E-mail: yujidong@caep.cn

  • 中图分类号: O344

Overview of the Study of Dynamical Plastic Deformation Based on Dislocation Dynamics Method

  • 摘要: 金属材料的动态塑性变形行为是一个多尺度的瞬变动力学过程,是物理学、力学以及材料科学等学科的交汇点,相关研究对工程应用具有重要的指导意义。动态载荷作用下,微观层面单个缺陷行为与介观层面缺陷群的集体演化行为交织在一起,导致金属材料呈现复杂的宏观力学现象。已有研究表明,金属材料的动态塑性变形与准静态变形存在显著差异,并且受到诸多内部及外部因素的影响。近几十年来,人们发展了位错动力学方法研究金属材料的动态塑性变形。但是由于动态变形问题的复杂性,对动态塑性变形的认识仍然存在不足。本文从计算方法和变形理论两个方面对该领域国内外发展历史及重要进展进行了回顾,以期为动态塑性变形研究提供有益的参考。

     

  • 图  剪应力随加载应力的变化[42]

    Figure  1.  Shear stress vs. applied stress[42]

    图  准弹性卸载实验中波系传播以及波剖面示意图[50]

    Figure  2.  x-t diagram and the schematic view of particle velocity history[50]

    图  不同加载路径下位错演化行为的原子模拟结果[52]

    Figure  3.  Atomistic simulations under shock wave loading and ramp wave loading[52]

    图  Asay模型与实验结果的对比[51]

    Figure  4.  Comparison between Asay’s results and experimental results[51]

    图  弹性前驱衰减现象[53]

    Figure  5.  Decay of the elastic precursor[53]

  • [1] MEYERS M A. 材料的动力学行为 [M]. 张庆明等, 译. 北京: 国防工业出版社, 2006: 1–4.
    [2] BAI Y L, WANG H Y, XIA M F, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales [J]. Applied Mechanics Reviews, 2005, 58(6): 372–388. doi: 10.1115/1.2048654
    [3] HIRTH J P, LOTHE J. Theory of dislocations [M]. New York: John Wiley and Sons, 1982: 3.
    [4] LOVE A E H. A treatise on the mathematical theory of elasticity [M]. Cambridge: Cambridge University Press, 1927.
    [5] OROWAN E. Die mechanischen festigkeitseigenschaften und die realstruktur der kristalle [J]. Zeitschrift für Kristallographie, 1934, 89(605): 634.
    [6] 王礼立. 应力波基础[M]. 第2版. 北京:国防工业出版社, 2010: 1–4.
    [7] BULATOV V V, CAI W. Computer simulations of dislocations [M]. Oxford: Oxford University Press, 2006.
    [8] MARKENSCOFF X, CLIFTON R J. The nonuniformly moving edge dislocation [J]. Journal of the Mechanics, Physics and Solids, 1981, 29(3): 253–262. doi: 10.1016/0022-5096(81)90029-6
    [9] LAZAR M. On the elastic fields produced by non-uniformly moving dislocations: a revisit [J]. Philosophical Magazine, 2011, 91(25): 3327–3342. doi: 10.1080/14786435.2011.579584
    [10] GURRUTXAGA-LERMA B, BALINT D S, DINI D. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics [J]. Physical Review Letters, 2015, 114: 174301. doi: 10.1103/PhysRevLett.114.174301
    [11] CAI W. Atomistic and mesoscale modeling of dislocation mobility [D]. Cambridge: Massachusetts Institute of Technology, 2001.
    [12] GHONIEM N M, TONG S H, SUN L Z. Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation [J]. Physical Review B: Condensed Matter, 2000, 61(2): 913–927. doi: 10.1103/PhysRevB.61.913
    [13] ZBIB H M, RUBIA T D D L. A multiscale model of plasticity [J]. International Journal of Plasticity, 2002, 18(9): 1133–1163. doi: 10.1016/S0749-6419(01)00044-4
    [14] GIESSEN E, NEEDLEMAN A. Discrete dislocation plasticity: a simple planar model [J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(5): 689–735. doi: 10.1088/0965-0393/3/5/008
    [15] KUBIN L P, CANOVA G, CONDAT M, et al. Dislocation microstructures and plastic flow: a 3D simulation [J]. Solid State Phenomena, 1992(23/24): 455–472.
    [16] DEVINCRE B, MADEC R, MONNET G, et al. Modeling crystal plasticity with dislocations dynamics simulations: the ‘microMegas’ code [M]// THOMAS O, PONCHET A, FOREST S. Mechanics of Nano-Objects. Paris: Presses des Mines, 2011: 81–89.
    [17] MADEC R, KUBIN L P. Dislocation strengthening in FCC metals and in BCC metals at high temperatures [J]. Acta Materilia, 2017, 126: 166–173. doi: 10.1016/j.actamat.2016.12.040
    [18] KOCK U F. Laws for work-hardening and low-temperature creep [J]. Journal of Engineering Materials and Technology, 1976, 98(1): 76–85. doi: 10.1115/1.3443340
    [19] ZAISER M, NIKITAS N, HOCHRAINER T, et al. Modelling size effects using 3D density-based dislocation dynamics [J]. Philosophical Magazine, 2007, 87: 11–21. doi: 10.1080/14786430600863047
    [20] BARTON N R, BERNIER J V, BECKER R, et al. A multiscale strength model for extreme loading conditions [J]. Journal of Applied Physics, 2011, 109(7): 073501. doi: 10.1063/1.3553718
    [21] JHONSTON W G, GILMAN J J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals [J]. Journal of Applied Physics, 1959, 30(2): 129. doi: 10.1063/1.1735121
    [22] MARIAN J, CAI W, BULATOV V V. Dynamic transition from smooth to rough to twinning in dislocation motion [J]. Nature Materials, 2004, 3: 158–163. doi: 10.1038/nmat1072
    [23] ARMSTRONG R W, ARNOLD W, ZERILLI F J. Dislocation mechanics of copper and iron in high rate of deformation tests [J]. Journal of Applied Physics, 2009, 105(2): 023511. doi: 10.1063/1.3067764
    [24] MEYERS M A, JARMAKANI H, BRINGA E M, et al. Dislocations in shock compression and release [M]// HIRTH J P, KUBIN L. Dislocations in Solids. The Netherlands: North-Holland, 2009: 91-197.
    [25] AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates [J]. International Journal of Plasticity, 2011, 27(1): 1–24. doi: 10.1016/j.ijplas.2010.03.002
    [26] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metall, 1988, 36(1): 81–83. doi: 10.1016/0001-6160(88)90030-2
    [27] KANEL G I. Unusual behavior of usual materials in shock waves [J]. Journal of Physics: Conference Series, 2014, 500: 012001. doi: 10.1088/1742-6596/500/1/012001
    [28] GAO C Y, ZHANG L C. Constitutive modeling of plasticity of fcc metals under extremely high strain rates [J]. International Journal of Plasticity, 2012, 32/33: 121–133. doi: 10.1016/j.ijplas.2011.12.001
    [29] FAN Y, OSETSKY Y N, YIP S, et al. Onset mechanism of strain-rate-induced flow stress upturn [J]. Physical Revivew Letters, 2012, 109(13): 135503. doi: 10.1103/PhysRevLett.109.135503
    [30] KANEL G I, RAZORENOV S V, BAUMUNG K, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. Journal of Applied Physics, 2001, 90(1): 136. doi: 10.1063/1.1374478
    [31] ZARETSKY E B, KANEL G I. Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression [J]. Journal of Applied Physics, 2012, 112(7): 073504. doi: 10.1063/1.4755792
    [32] ZARETSKY E B, KANEL G I. Response of copper to shock-wave loading at temperatures up to melting point [J]. Journal of Applied Physics, 2013, 114(8): 083511. doi: 10.1063/1.4819328
    [33] KANEL G I, GARKUSHIN G V, SAVINYKH A S, et al. Shock response of magnesium single crystals at normal and elevated temperatures [J]. Journal of Applied Physics, 2014, 116(14): 143504. doi: 10.1063/1.4897555
    [34] ZARETSKY E B, KANEL G I. Plastic flow in shock-loaded silver at strain rates from 104 s–1 to 107 s–1 and temperatures from 296 K to 1233 K [J]. Journal of Applied Physics, 2011, 110(7): 073502. doi: 10.1063/1.3642989
    [35] ZARETSKY E B, KANEL G I. Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. non-monotonous decay of the elastic wave in vanadium [J]. Journal of Applied Physics, 2014, 115(24): 243502. doi: 10.1063/1.4885047
    [36] RAZORENOV S V, ZARETSKY E B, SAVINYKH A S. The spall strength and Hugoniot elastic limit of mono crystalline and polycrystalline copper near melting temperature [J]. Journal of Physics: Conference Series, 2014, 500: 112053. doi: 10.1088/1742-6596/500/11/112053
    [37] KRASNIKOV V S, MAYER A E, YALOVETS A P. Dislocation based high rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations [J]. International Journal of Plasticity, 2011, 27(8): 1294–1308. doi: 10.1016/j.ijplas.2011.02.008
    [38] BEÑAT GURRUTXAGA-LERMA, BALINT D S, DINI D, et al. The effect of temperature on the elastic precursor decay in shock loaded FCC aluminum and BCC iron [J]. International Journal of Plasticity, 2017, 96: 135–155. doi: 10.1016/j.ijplas.2017.05.001
    [39] SWEGLE J W, GRADY D E. Shock viscosity and the prediction of shock wave rise times [J]. Journal of Applied Physics, 1995, 58(2): 692–701.
    [40] CROWHURST J C, ARMSTRONG M R, KNIGHT K B, et al. Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold [J]. Physical Review Letters, 2011, 107(14): 144302. doi: 10.1103/PhysRevLett.107.144302
    [41] CAO B Y, LASSILA D H, SCHNEIDER M S, et al. Effect of shock compression method on the defect substructure in monocrystalline copper [J]. Materials Science and Engineering A, 2005, 409(1/2): 270–281.
    [42] JARMAKANI H N, BRINGA E M, ERHART P, et al. Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals [J]. Acta Materilia, 2008, 56(19): 5584–5604. doi: 10.1016/j.actamat.2008.07.052
    [43] LIPKIN J, ASAY J R. Reshock and release of shock-compressed 6061-T6 aluminum [J]. Journal of Applied Physics, 1977, 48(1): 182–189. doi: 10.1063/1.323306
    [44] ASAY J R, LIPKIN J. Self-consistent technique for estimating the dynamic yield strength of a shock-loaded material [J]. Journal of Applied Physics, 1978, 49(7): 4242–4247. doi: 10.1063/1.325340
    [45] 俞宇颖. 强冲击载荷作用下LY12铝合金的准弹性卸载特性及层裂研究 [D]. 绵阳: 中国工程物理研究院, 2006: 73–80.

    YU Y Y. Study on the quasi-elastic release behavior and spallation of LY12 aluminum alloy under strong loading [D]. Mianyang: China Academy of Engineering Physics, 2006: 73–80.
    [46] COCHRAN S G, GUINAN M W. Bauschinger effect in uranium: ECRL-17105 [R]. 1976.
    [47] JOHNSON J N, HIXSON R S, GRAY G T, et al. Quasielastic release in shock-compressed solids [J]. Journal of Applied Physics, 1992, 72(2): 429–441. doi: 10.1063/1.351871
    [48] DWIVEDI S K, ASAY J R, GUPTA Y M. Two-dimensional mesoscale simulations of quasielastic reloading and unloading in shock compressed aluminum [J]. Journal of Applied Physics, 2006, 100(8): 083502. doi: 10.1063/1.2357640
    [49] 潘昊. 基于晶体塑性理论研究织构对材料动态性能的影响 [D]. 绵阳: 中国工程物理研究院, 2017.

    PAN H. Study on texture effect to dynamic behavior of material based on crystal plasticity theory [D]. Mianyang: China Academy of Engineering Physics, 2017.
    [50] YAO S L, PEI X Y, YU J D, et al. A dislocation-based explanation of quasi-elastic release in shock loaded aluminum [J]. Journal of Applied Physics, 2017, 121(3): 035101. doi: 10.1063/1.4974055
    [51] DING J L, ASAY J R, AO T. Modeling of the elastic precursor behavior and dynamic inelasticity of tantalum under ramp wave loading to 17 GPa [J]. Journal of Applied Physics, 2010, 107(8): 083508. doi: 10.1063/1.3373388
    [52] BRINGA E M, ROSOLANKOVA K, RUDD R E, et al. Shock deformation of FCC metals on subnanosecond timescales [J]. Nature Materials, 2006, 5(10): 805–809. doi: 10.1038/nmat1735
    [53] ASAY J R, FOWLES G R, GUPTA Y M. Determination of material relaxation properties from measurements on decaying elastic shock fronts [J]. Journal of Applied Physics, 1972, 43(2): 744–746. doi: 10.1063/1.1661195
    [54] DUVALL G E. Stress waves in anelastic solids [M]. Berlin: Springer-Verlag, 1964:20.
    [55] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculation [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
    [56] EVERS L P, BREKELMANS W A M, GEERS M G D. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects [J]. International Journal of Solids and Structures, 2004, 41(18/19): 5209–5230.
    [57] KAZMI B, MURR L E. Anomalous residual shock hardening in nickel and stainless steel at a short pulse duration [J]. Scripta Metallurgica, 1979, 13(11): 993–997. doi: 10.1016/0036-9748(79)90191-1
    [58] BRINGA E M, CARO A, VICTORIA M, et al. The atomistic modeling of wave propagation in nanocrystals [J]. Journal of the Minerals, Metals and Materials Society, 2005, 57(9): 67–70. doi: 10.1007/s11837-005-0119-9
    [59] GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 65(4): 1–12.
    [60] DAVILA L P, ERHART P, BRINGA E M, et al. Atomistic modeling of shock-induced void collapse in copper [J]. Applied Physical Letters, 2005, 86(16): 161902. doi: 10.1063/1.1906307
    [61] LUBARDA V A, SCHNEIDER M S, KALANTAR D H, et al. Void growth by dislocation emission [J]. Acta Materilia, 2004, 52(6): 1397–1408. doi: 10.1016/j.actamat.2003.11.022
    [62] 王海燕. 氦泡对延性金属材料静态和动态力学性质影响的研究 [D]. 成都: 四川大学, 2008.
    [63] SHAO J L, WANG P, HE A M. Compression-induced stacking fault tetrahedral around He bubble in Al [J]. Journal of Applied Physics, 2011, 116: 163516.
    [64] REISMAN D B, WOLFER W G, ELSHOLZ A, et al. Isentropic compression of irradiated stainless steel on the Z accelerator [J]. Journal of Applied Physics, 2003, 93(11): 8952–8957. doi: 10.1063/1.1571969
    [65] WEERTMAN J. Moving dislocations in the shock front [M]// MEYERS M A, MURR L E. Shock Waves and High Strain Rate Phenomena in Metals, 1981: 469.
    [66] GUMBSCH P, GAO H. Dislocations faster than the speed of sound [J]. Science, 1999, 283(5404): 965–968. doi: 10.1126/science.283.5404.965
    [67] NOSENKO V, ZHDANOV S, MORFILL G. Supersonic dislocations observed in a plasma crystal [J]. Physical Review Letters, 2007, 99(2): 025002. doi: 10.1103/PhysRevLett.99.025002
    [68] VOLGER T J. On measuring the strength of metals at ultrahigh strain rates [J]. Journal of Applied Physics, 2009, 106(5): 053530. doi: 10.1063/1.3204777
    [69] ZARETSKY E B. Impact response of nickel in the 150–1150 K temperature range [J]. Journal of Applied Physics, 2009, 105: 093508. doi: 10.1063/1.3122523
    [70] ZARETSKY E B, KANEL G I. Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures [J]. Journal of Applied Physics, 2015, 117(19): 195901. doi: 10.1063/1.4921356
  • 加载中
图(5)
计量
  • 文章访问数:  8419
  • HTML全文浏览量:  2688
  • PDF下载量:  124
出版历程
  • 收稿日期:  2019-02-22
  • 修回日期:  2019-04-28

目录

    /

    返回文章
    返回