基于埋入式应变片的纤维缠绕压力容器的健康监测

肖飚 杨斌 胡超杰 项延训 轩福贞

肖飚, 杨斌, 胡超杰, 项延训, 轩福贞. 基于埋入式应变片的纤维缠绕压力容器的健康监测[J]. 高压物理学报, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726
引用本文: 肖飚, 杨斌, 胡超杰, 项延训, 轩福贞. 基于埋入式应变片的纤维缠绕压力容器的健康监测[J]. 高压物理学报, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726
XIAO Biao, YANG Bin, HU Chaojie, XIANG Yanxun, XUAN Fuzhen. Structural Health Monitoring of Filament Wound Pressure Vessel by Embedded Strain Gauges[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726
Citation: XIAO Biao, YANG Bin, HU Chaojie, XIANG Yanxun, XUAN Fuzhen. Structural Health Monitoring of Filament Wound Pressure Vessel by Embedded Strain Gauges[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726

基于埋入式应变片的纤维缠绕压力容器的健康监测

doi: 10.11858/gywlxb.20190726
基金项目: 国家重点研发计划(2018YFC0808800);国家自然科学基金(11702097,51835003);中央高校基本科研业务费(222201714015)
详细信息
    作者简介:

    肖 飚(1982-),男,博士研究生,主要从事压力容器结构健康监测及损伤检测技术研究. E-mail:yxiaobiao@ssei.cn

    通讯作者:

    杨 斌(1988-),男,博士,讲师,硕士生导师,主要从事复合材料压力容器的力学性能及健康监测研究. E-mail:yangbin@ecust.edu.cn

  • 中图分类号: O347; O521.3

Structural Health Monitoring of Filament Wound Pressure Vessel by Embedded Strain Gauges

  • 摘要: 在玻璃纤维缠绕金属内胆复合材料压力容器的制备过程中,将应变传感器埋在金属内胆与玻璃纤维/环氧树脂复合材料层之间,得到了具有原位监测功能的纤维缠绕压力容器。对该纤维缠绕压力容器开展水压疲劳和爆破实验。疲劳压力的最大值和最小值分别为25 MPa和2 MPa,最大疲劳周次为5700;打压爆破压力为零到爆破压力,打压速率为2 MPa/s。实验过程中,利用埋入式应变传感器原位监测了压力容器的应变变化,建立了不同载荷作用下纤维缠绕压力容器的应变与受载情况之间的关联。结果表明:采用埋入式应变传感器监测纤维缠绕压力容器的健康状况具有可行性;该方法在保护应变传感器不受外载荷破坏的前提下,原位监测了压力容器在疲劳和爆破实验中的应变变化趋势。

     

  • 图  具有原位监测功能的复合材料压力容器制备过程:(a)纤维缠绕工艺,(b)粘贴在金属内胆的应变片,(c)带有埋入式应变片的纤维缠绕压力容器

    Figure  1.  Preparation of the filament wound pressure vessel with the embedded strain gauges: (a) the fiber winding processing; (b) the strain gauges attached on the inner steel tank; (c) the pressure vessel with the embedded stain gauges

    图  纤维缠绕压力容器原位监测装置

    Figure  2.  Experimental setup for in-situ monitoring the filament wound pressure vessel

    图  水压疲劳实验参数

    Figure  3.  Parameters of hydraulic fatigue cycling

    图  埋入式应变片测得的第3000~3300周疲劳时的应变(a)及局部放大图(b)

    Figure  4.  Strain monitored by the embedded strain gauge during the 3000th–3300th cycles fatigue test (a) and the zoomed-in plot (b)

    图  埋入式应变片测得的第5100~5700周疲劳时的应变(a)及局部放大图(b)

    Figure  5.  Strain monitored by the embedded strain gauge during the 5100th–5700th cycles fatigue test (a) and the zoomed-in plot (b)

    图  打压至爆破过程中未经疲劳(a)和经过5700周疲劳(b)的纤维缠绕压力容器的应变变化

    Figure  6.  Strain monitored by the embedded strain gauge during the bursting test: (a) before the test and (b) after 5700 cycles fatigue test

    图  打压爆破失效的纤维缠绕压力容器

    Figure  7.  Filament wound pressure vessel after bursting

    图  打压至5 MPa和15 MPa的纤维缠绕压力容器应变监测图

    Figure  8.  Strain monitored by the embedded strain gauge during pressurization: (a) up to 5 MPa, and (b) up to 15 MPa

    表  1  纤维缠绕压力容器中金属内胆参数

    Table  1.   Parameters of the inner metal tank in the filament wound pressure vessel

    Material External
    diameter/mm
    Wall thickness
    /mm
    Height
    /mm
    Weight
    /kg
    Volume
    /L
    Work pressure
    /MPa
    Top pressure
    /MPa
    30CrMo steel 325 5 750 45.3 55 20 34
    下载: 导出CSV

    表  2  纤维缠绕压力容器打压疲劳试验参数

    Table  2.   Parameters of the hydraulic fatigue cycling

    Media Cycling rate Minimum pressure/MPa Rising pressure time/s Minimum pressure holding time/s
    Water 7.8 2 3.1 2
    Temperature/℃ Cycle times Maximum pressure/MPa Pressure drop time/s Maximum pressure holding time/s
    11.2 5700 25 0.6 2
    下载: 导出CSV

    表  3  不同纤维缠绕压力容器在不同压力下的最大应变

    Table  3.   Maximum strain of the pressure vessel at various pressures

    Pressure/MPa Maximum strain
    Without fatigue and groove Without fatigue, with groove Fatigue, without groove Fatigue, with groove
    5 –120 –100 –400 –1000
    10 –160 –150 –1200 –1200
    15 –300 –300 –1200 –1200
    20 –500 –500 –1500 –1500
    25 –600 –650
    下载: 导出CSV
  • [1] 缑林虎, 郑锡涛, 程勇. 平面缠绕炭纤维压力容器大变形有限元分析 [J]. 固体火箭技术, 2010, 33(2): 205–208. doi: 10.3969/j.issn.1006-2793.2010.02.019

    GOU L H, ZHENG X T, CHENG Y. Large deformation finite element analysis of planar carbon fiber wound composite pressure vessel [J]. Journal of Solid Rocket Technology, 2010, 33(2): 205–208. doi: 10.3969/j.issn.1006-2793.2010.02.019
    [2] 郑津洋, 开方明, 刘仲强, 等. 轻质高压储氢容器 [J]. 化工学报, 2004, 55(Suppl 1): 130–133.

    ZHENG J Y, KAI F M, LIU Z Q, et al. Lightweight high-pressure hydrogen tank [J]. Journal of Industry and Engineering, 2004, 55(Suppl 1): 130–133.
    [3] 杨斌, 章继峰, 梁文彦, 等. 玻璃纤维表面纳米SiO改性对GF/PCBT复合材料力学性能的影响 [J]. 复合材料学报, 2015, 32(3): 691–698.

    YANG B, ZHANG J F, LIANG W Y, et al. Effects of glass fiber surface modified by nano-SiO2 on mechanical properties of GF/PCBT composites [J]. Acta Metallurgica Sinica, 2015, 32(3): 691–698.
    [4] 杨斌, 章继峰, 周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能 [J]. 复合材料学报, 2015, 32(2): 435–443.

    YANG B, ZHANG J F, ZHOU L M. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate [J]. Acta Metallurgica Sinica, 2015, 32(2): 435–443.
    [5] 路智敏, 李强, 李卓. 基于爆破试验的CFRP固体火箭发动机壳体的可靠性设计 [J]. 复合材料学报, 2009, 26(2): 176–180. doi: 10.3321/j.issn:1000-3851.2009.02.031

    LU Z M, LI Q, LI Z. Reliability design of CFRP solid rocket motor vessel based on the burst experiment [J]. Acta Metallurgica Sinica, 2009, 26(2): 176–180. doi: 10.3321/j.issn:1000-3851.2009.02.031
    [6] OZEVIN D, HARDING J. Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity [J]. International Journal of Pressure Vessels and Piping, 2012, 92: 63–69. doi: 10.1016/j.ijpvp.2012.01.001
    [7] CHOU H Y, MOURITZ A P, BANNISTER M K, et al. Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure [J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 111–120. doi: 10.1016/j.compositesa.2014.11.027
    [8] KHAN A, KO D K, LIM S C, et al. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network [J]. Composites Part B: Engineering, 2019, 161: 586–594. doi: 10.1016/j.compositesb.2018.12.118
    [9] 王晓勇, 熊建平, 高义广. X射线切线照相检测技术在纤维缠绕压力容器检测中的应用 [J]. 航天制造技术, 2011(6): 65–68.

    WANG X Y, XIONG J P, GAO Y G. Application of X-ray inspection technique in detection of filament-wound pressure vessel [J]. Aerospace Manufacturing Technology, 2011(6): 65–68.
    [10] 杜善义, 冷劲松, 顾震隆. 用应力波技术对配橡胶内衬的复合材料板壳进行无损检测 [J]. 复合材料学报, 1993, 10(1): 65–69.

    DU S Y, LENG J S, GU Z L. Non-destructive testing for composite plate and shell with rubber liner using stress wave technique [J]. Acta Metallurgica Sinica, 1993, 10(1): 65–69.
    [11] 乔业程, 王福强. 压力容器氢损伤的监测与检测方法 [J]. 橡塑技术与装备, 2018, 44(20): 54–56.

    QIAO Y C, WANG F Q. Monitoring and detection of hydrogen damage in pressure vessels [J]. China Rubber/Plastics Technology and Equipment, 2018, 44(20): 54–56.
    [12] 赵海涛, 张博明, 武湛君, 等. 纤维缠绕复合材料压力容器健康监测研究进展 [J]. 压力容器, 2007, 24(3): 48–61. doi: 10.3969/j.issn.1001-4837.2007.03.012

    ZHAO H T, ZHANG B M, WU Z J, et al. Development of health monitoring for filament wound composite pressure vessels [J]. Pressure Vessel Technology, 2007, 24(3): 48–61. doi: 10.3969/j.issn.1001-4837.2007.03.012
    [13] BELLAN F, BULLETTI A, CAPINERI L, et al. A new design and manufacturing process for embedded Lamb waves interdigital transducers based on piezopolymer film [J]. Sensors and Actuators A, 2005, 123: 379–387.
    [14] AI D, ZHU H, LUO H. Sensitivity of embedded active PZT sensor for concrete structural impact damage detection [J]. Construction and Building Materials, 2016, 111: 348–357. doi: 10.1016/j.conbuildmat.2016.02.094
    [15] ANNAMDAS V G M, SOH C K. Embedded piezoelectric ceramic transducers in sandwiched beams [J]. Smart Materials and Structures, 2006, 15(2): 538–549. doi: 10.1088/0964-1726/15/2/037
    [16] DZIENDZIKOWSKI M, KURNYTA A, DRAGAN K, et al. In situ barely visible impact damage detection and localization for composite structures using surface mounted and embedded PZT transducers: a comparative study [J]. Mechanical Systems and Signal Processing, 2016, 78: 91–106. doi: 10.1016/j.ymssp.2015.09.021
    [17] GHIMIRE M, WANG C, DIXON K, et al. In situ monitoring of prestressed concrete using embedded fiber loop ringdown strain sensor [J]. Measurement, 2018, 124: 224–232. doi: 10.1016/j.measurement.2018.04.017
    [18] WANG Y, WANG Y, HAN B, et al. Strain monitoring of concrete components using embedded carbon nanofibers/epoxy sensors [J]. Construction and Building Materials, 2018, 186: 367–378. doi: 10.1016/j.conbuildmat.2018.07.147
    [19] CHOWDHURY N T, JOOSTEN M W, PEARCE G M K. An embedded meshing technique (SET) for analysing local strain distributions in textile composites [J]. Composite Structures, 2019, 210: 294–309. doi: 10.1016/j.compstruct.2018.11.026
    [20] KANERVA M, ANTUNES P, SARLIN E, et al. Direct measurement of residual strains in CFRP-tungsten hybrids using embedded strain gauges [J]. Materials & Design, 2017, 127: 352–363.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  6520
  • HTML全文浏览量:  3095
  • PDF下载量:  35
出版历程
  • 收稿日期:  2019-02-10
  • 修回日期:  2019-03-07
  • 发布日期:  2019-04-25

目录

    /

    返回文章
    返回