On the Accuracy of the Johnson-Cook Constitutive Model for Metals
doi: 10.11858/gywlxb.20190721
-
摘要: 通过比较JC模型预测结果与6种金属(2024-T351铝合金、6061-T6铝合金、OFHC无氧铜、4340高强钢、Ti-6Al-4V钛合金和Q235软钢)在不同应变率及温度下的实验数据,对JC本构模型的精确性进行了关键评估。为了进一步评估其精确性,采用JC本构模型和失效准则对平头弹正撞2024-T351铝合金靶板进行数值模拟,并与实验结果比较。结果表明:JC本构模型只适用于中、低应变率和温度下的Mises材料,对非Mises材料该模型预测的剪切应力-应变曲线和失效与实验结果吻合较差;同时,JC本构模型的精度随应变率和温度的提高而降低,特别是在高应变率条件下利用实验得到的动态增强因子进行相应数值模拟时,所得计算结果与弹道穿透实验结果不一致,说明其表达式(即准静态应力-应变关系×动态增强因子)是不恰当的。Abstract: A critical assessment is made herein on the accuracy of the Johnson-Cook (JC) constitutive model by comparing the model predictions with the test data for 2024-T351 aluminum alloy, 6061-T6 aluminum alloy, OFHC copper, 4340 steel, Ti-6Al-4V alloys and Q235 mild steel. These materials are selected because their test data are more complete in terms of true stress-true strain relationships, strain rate effects, temperature effects and failure. To further assess its accuracy numerical results for the ballistic perforation of plates made of 2024-T351 aluminum alloy using the JC constitutive model are also presented and compared with corresponding test data. It transpires that the JC constitutive model is applicable to Mises materials at quasi-static to intermediate strain rates and low to moderate temperature. It also transpires that for non-Mises materials the agreement between the model predictions and the test results are poor in terms of shear stress-shear strain curve and fracture strain. Furthermore, the accuracy of the JC model decreases with increasing strain rate, temperature and, above all, it fails to produce consistent results at high strain rates when the experimentally obtained dynamic increase factors (DIF) are employed in the calculations implying the form of the model’s equation (namely, quasi-static stress-strain curve multiplied by DIF) may be inadequate at least for the scenarios where high strain rates are involved.
-
Figure 18. Comparison of the numerically predicted residual velocities with the test results for the perforation of the 4 mm-thick 2024-T351 aluminum alloy plates struck normally by the 5.5 mm-diameter flat-ended projectile[21]
Table 1. Values of constants in the Johnson-Cook constitutive model and Johnson-Cook fracture criterion
Materials A/MPa B/MPa n C m ${\dot \varepsilon _0}/{\rm s}^{-1}$ Tm/K D1 D2 D3 2024-T351 Al[3–4] 340 510 0.510 0.002 1.890 9.0×10–5 775 –0.070 1.020 –1.620 6061-T6 Al[5–8] 265 170 0.314 0.007 1.316 1.0×10–3 855 –0.070 0.810 –1.240 OFHC copper[1, 9–13] 50 340 0.425 0.011 0.883 1.0×10–5 1356 0.540 4.890 –3.030 4340 steel[1–2] 792 846 0.582 0.009 1.030 2.0×10–3 1793 0.050 3.440 –2.120 Ti-6Al-4V alloy[14–17] 938 947 0.636 0.013 0.779 1.0×10–5 1933 0.200 3.590 –3.800 Q235 mild steel[18–20] 293 543 0.489 0.045 0.942 2.1×10–3 1795 0.070 6.116 –3.445 Table 2. Values of various parameters for 2024-T351 aluminum alloy
$\rho $/(kg·m–3) E/GPa v $\chi $ Cp/(J·kg–1·K–1) C0/ (m·s–1) s1 ${\varGamma _0}$ 2700 72 0.3 0.9 875 5328 1.338 2 JC Model A/MPa B/MPa n C m ${\dot \varepsilon _0}$/s–1 Tm/K This paper 340 510 0.510 0.002 1.890 9.0×10–5 775 Ref.[25] 352 440 0.42 0.0083 1.7 3.3×10–4 775 JC Model D1 D2 D3 D4 D5 This paper –0.070 1.020 –1.620 0.011 0 Ref.[25] 0.13 0.13 –1.5 0.011 0 -
[1] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547. [2] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9 [3] SEIDT J D, GILAT A. Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions [J]. International Journal of Solids and Structures, 2013, 50(10): 1781–1790. doi: 10.1016/j.ijsolstr.2013.02.006 [4] WIERZBICKI T, BAO Y, LEE Y W. Calibration and evaluation of seven fracture models [J]. International Journal of Mechanical Sciences, 2005, 47(4): 719–743. [5] WILKINS M L, STREIT R D, REAUGH J E. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests: UCRL-53058 [R]. Livermore: Lawrence Livermore National Laboratories, 1980. [6] SCAPINA M, MANES A. Behaviour of Al6061-T6 alloy at different temperatures and strain-rates: experimental characterization and material modeling [J]. Materials Science and Engineering A, 2018, 734: 318–328. doi: 10.1016/j.msea.2018.08.011 [7] LESUER D R, KAY G J, LEBLANC M M. Modeling large-strain, high-rate deformation in metals: UCRL-JC-134118 [R]. Livermore: Lawrence Livermore National Laboratory, 2001. [8] GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminum 6061-T6 with the rate-independent Bao-Wierzbicki fracture model [J]. International Journal of Impact Engineering, 2015, 76(1): 207–220. [9] BAIG M, KHAN A S, CHOI S H, et al. Shear and multiaxial responses of oxygen free high conductivity (OFHC) copper over wide range of strain-rates and temperatures and constitutive modeling [J]. International Journal of Plasticity, 2013, 40(1): 65–80. [10] NEMAT-NASSER S, LI Y. Flow stress of FCC polycrystals with application to OFHC Cu [J]. Acta Materialia, 1998, 46: 565–577. doi: 10.1016/S1359-6454(97)00230-9 [11] GUO W G. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates [J]. Explosion and Shock Waves, 2005, 25(3): 244–250. doi: 10.3321/j.issn:1001-1455.2005.03.009 [12] ANAND L, KALIDINDI S R. The process of shear band formation in plane strain compression of fcc metals: effects of crystallographic texture [J]. Mechanics of Materials, 1994, 17(2): 223–243. [13] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metallurgica, 1988, 36(1): 81–93. doi: 10.1016/0001-6160(88)90030-2 [14] MIRONE G, BARBAGALLO R, CORALLO D. A new yield criteria including the effect of lode angle and stress triaxiality [J]. Procedia Structural Integrity, 2016, 2: 3684–3696. doi: 10.1016/j.prostr.2016.06.458 [15] KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. International Journal of Plasticity, 2004, 20(12): 2233–2248. doi: 10.1016/j.ijplas.2003.06.005 [16] NEMAT-NASSER S, GUO W G, NESTERENKO V F, et al. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling [J]. Mechanics of Materials, 2001, 33(8): 425–439. doi: 10.1016/S0167-6636(01)00063-1 [17] GIGLIO M, MANES A, VIGANÒ F. Ductile fracture locus of Ti-6Al-4V titanium alloy [J]. International Journal of Mechanical Sciences, 2012, 54(1): 121–135. doi: 10.1016/j.ijmecsci.2011.10.003 [18] GUO Z T, GAO B, GUO Z, et al Dynamic constitutive relation based on J-C model of Q235 steel 2018 38 4 804 810 doi:10.11883/bzycj-2016-0333 [19] LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158. [20] GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. doi: 10.11883/bzycj-2017-0163 [21] MARCOS R M, DANIEL G G, ALEXIS R, et al. Influence of stress state on the mechanical impact and deformation behaviors of aluminum alloys [J]. Metals, 2018, 8(7): 520–540. doi: 10.3390/met8070520 [22] CAMPBELL J D, COOPER R H. Yield and flow of low-carbon steel at medium strain rates [C]//Proceedings of the Conference on the Physical Basis of Yield and Fracture. London: Institute of Physics and Physical Society, 1966: 77–87. [23] JONES N. Structural impact [M]. 2nd ed. Cambridge: Cambridge University Press, 2012. [24] CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. doi: 10.3321/j.issn:1001-1455.2005.05.010 [25] BAI Y, WIERZBICKI T. A comparative study of three groups of ductile fracture loci in the 3D space [J]. Engineering Fracture Mechanics, 2015, 135: 147–167. doi: 10.1016/j.engfracmech.2014.12.023 [26] WANG P, QU S. Analysis of ductile fracture by extended unified strength theory [J]. International Journal of Plasticity, 2018, 104: 196–213. doi: 10.1016/j.ijplas.2018.02.011