On the Accuracy of the Johnson-Cook Constitutive Model for Metals

ZHOU Lin WANG Zihao WEN Heming

周琳, 王子豪, 文鹤鸣. 简论金属材料JC本构模型的精确性[J]. 高压物理学报, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721
引用本文: 周琳, 王子豪, 文鹤鸣. 简论金属材料JC本构模型的精确性[J]. 高压物理学报, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721
ZHOU Lin, WANG Zihao, WEN Heming. On the Accuracy of the Johnson-Cook Constitutive Model for Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721
Citation: ZHOU Lin, WANG Zihao, WEN Heming. On the Accuracy of the Johnson-Cook Constitutive Model for Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721

On the Accuracy of the Johnson-Cook Constitutive Model for Metals

doi: 10.11858/gywlxb.20190721
More Information
    Author Bio:

    ZHOU Lin (1988-), female, doctoral student, major in impact dynamics. E-mail: zlxzh@mail.ustc.edu.cn

    Corresponding author: WEN Heming (1965-), male, Ph.D, professor, major in impact dynamics. E-mail: hmwen@ustc.edu.cn
  • 摘要: 通过比较JC模型预测结果与6种金属(2024-T351铝合金、6061-T6铝合金、OFHC无氧铜、4340高强钢、Ti-6Al-4V钛合金和Q235软钢)在不同应变率及温度下的实验数据,对JC本构模型的精确性进行了关键评估。为了进一步评估其精确性,采用JC本构模型和失效准则对平头弹正撞2024-T351铝合金靶板进行数值模拟,并与实验结果比较。结果表明:JC本构模型只适用于中、低应变率和温度下的Mises材料,对非Mises材料该模型预测的剪切应力-应变曲线和失效与实验结果吻合较差;同时,JC本构模型的精度随应变率和温度的提高而降低,特别是在高应变率条件下利用实验得到的动态增强因子进行相应数值模拟时,所得计算结果与弹道穿透实验结果不一致,说明其表达式(即准静态应力-应变关系×动态增强因子)是不恰当的。

     

  • Figure  1.  Comparison of the JC model with the true stress-true strain curves obtained from tension and torsion tests

    Figure  2.  Comparison of the JC model with the test data for 2024-T351 aluminum alloy

    Figure  7.  Comparison of the JC model with the test data for Q235 mild steel

    Figure  3.  Comparison of the JC model with the test data for 6061-T6 aluminum alloy

    Figure  4.  Comparison of the JC model with the test data for OFHC copper

    Figure  5.  Comparison of the JC model with the test data for 4340 steel

    Figure  6.  Comparison of the JC model with the test data for Ti-6Al-4V alloys

    Figure  8.  Comparison of DIF vs. strain rate at different plastic strains at room temperature

    Figure  9.  Comparison of the JC model predictions with the tensile test data for 2024-T351 aluminum alloy

    Figure  14.  Comparison of the JC model predictions with the compression test data for Q235 mild steel

    Figure  10.  Comparison of the JC model predictions with the tensile test data for 6061-T6 aluminum alloy

    Figure  11.  Comparison of the JC model predictions with the compression test data for OFHC copper

    Figure  12.  Comparison of the JC model predictions with the tensile test data for 4340 steel

    Figure  13.  Comparison of the JC model predictions with the compression test data for Ti-6Al-4V

    Figure  15.  Dependence of the equivalent strain to fracture on the stress triaxiality on some metal

    Figure  16.  Finite element model used in the numerical simulations

    Figure  17.  Comparison of the JC constitutive model with the test data for 2024-T351 aluminum alloy

    Figure  18.  Comparison of the numerically predicted residual velocities with the test results for the perforation of the 4 mm-thick 2024-T351 aluminum alloy plates struck normally by the 5.5 mm-diameter flat-ended projectile[21]

    Table  1.   Values of constants in the Johnson-Cook constitutive model and Johnson-Cook fracture criterion

    MaterialsA/MPaB/MPanCm${\dot \varepsilon _0}/{\rm s}^{-1}$Tm/KD1D2D3
    2024-T351 Al[34]3405100.5100.0021.8909.0×10–5 775–0.0701.020–1.620
    6061-T6 Al[58]2651700.3140.0071.3161.0×10–3 855–0.0700.810–1.240
    OFHC copper[1, 913] 503400.4250.0110.8831.0×10–51356 0.5404.890–3.030
    4340 steel[12]7928460.5820.0091.0302.0×10–31793 0.0503.440–2.120
    Ti-6Al-4V alloy[1417]9389470.6360.0130.7791.0×10–51933 0.2003.590–3.800
    Q235 mild steel[1820]2935430.4890.0450.9422.1×10–31795 0.0706.116–3.445
    下载: 导出CSV

    Table  2.   Values of various parameters for 2024-T351 aluminum alloy

    $\rho $/(kg·m–3)E/GPav$\chi $Cp/(J·kg–1·K–1)C0/ (m·s–1)s1${\varGamma _0}$
    2700720.30.987553281.3382
    JC ModelA/MPaB/MPanCm${\dot \varepsilon _0}$/s–1Tm/K
    This paper3405100.5100.0021.8909.0×10–5775
    Ref.[25]3524400.420.00831.73.3×10–4775
    JC ModelD1D2D3D4D5
    This paper–0.0701.020–1.6200.0110
    Ref.[25]0.130.13–1.50.0110
    下载: 导出CSV
  • [1] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547.
    [2] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [3] SEIDT J D, GILAT A. Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions [J]. International Journal of Solids and Structures, 2013, 50(10): 1781–1790. doi: 10.1016/j.ijsolstr.2013.02.006
    [4] WIERZBICKI T, BAO Y, LEE Y W. Calibration and evaluation of seven fracture models [J]. International Journal of Mechanical Sciences, 2005, 47(4): 719–743.
    [5] WILKINS M L, STREIT R D, REAUGH J E. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests: UCRL-53058 [R]. Livermore: Lawrence Livermore National Laboratories, 1980.
    [6] SCAPINA M, MANES A. Behaviour of Al6061-T6 alloy at different temperatures and strain-rates: experimental characterization and material modeling [J]. Materials Science and Engineering A, 2018, 734: 318–328. doi: 10.1016/j.msea.2018.08.011
    [7] LESUER D R, KAY G J, LEBLANC M M. Modeling large-strain, high-rate deformation in metals: UCRL-JC-134118 [R]. Livermore: Lawrence Livermore National Laboratory, 2001.
    [8] GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminum 6061-T6 with the rate-independent Bao-Wierzbicki fracture model [J]. International Journal of Impact Engineering, 2015, 76(1): 207–220.
    [9] BAIG M, KHAN A S, CHOI S H, et al. Shear and multiaxial responses of oxygen free high conductivity (OFHC) copper over wide range of strain-rates and temperatures and constitutive modeling [J]. International Journal of Plasticity, 2013, 40(1): 65–80.
    [10] NEMAT-NASSER S, LI Y. Flow stress of FCC polycrystals with application to OFHC Cu [J]. Acta Materialia, 1998, 46: 565–577. doi: 10.1016/S1359-6454(97)00230-9
    [11] GUO W G. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates [J]. Explosion and Shock Waves, 2005, 25(3): 244–250. doi: 10.3321/j.issn:1001-1455.2005.03.009
    [12] ANAND L, KALIDINDI S R. The process of shear band formation in plane strain compression of fcc metals: effects of crystallographic texture [J]. Mechanics of Materials, 1994, 17(2): 223–243.
    [13] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metallurgica, 1988, 36(1): 81–93. doi: 10.1016/0001-6160(88)90030-2
    [14] MIRONE G, BARBAGALLO R, CORALLO D. A new yield criteria including the effect of lode angle and stress triaxiality [J]. Procedia Structural Integrity, 2016, 2: 3684–3696. doi: 10.1016/j.prostr.2016.06.458
    [15] KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. International Journal of Plasticity, 2004, 20(12): 2233–2248. doi: 10.1016/j.ijplas.2003.06.005
    [16] NEMAT-NASSER S, GUO W G, NESTERENKO V F, et al. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling [J]. Mechanics of Materials, 2001, 33(8): 425–439. doi: 10.1016/S0167-6636(01)00063-1
    [17] GIGLIO M, MANES A, VIGANÒ F. Ductile fracture locus of Ti-6Al-4V titanium alloy [J]. International Journal of Mechanical Sciences, 2012, 54(1): 121–135. doi: 10.1016/j.ijmecsci.2011.10.003
    [18] GUO Z T, GAO B, GUO Z, et al Dynamic constitutive relation based on J-C model of Q235 steel Explosion and Shock Waves 2018 38 4 804 810 doi:10.11883/bzycj-2016-0333
    [19] LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158.
    [20] GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. doi: 10.11883/bzycj-2017-0163
    [21] MARCOS R M, DANIEL G G, ALEXIS R, et al. Influence of stress state on the mechanical impact and deformation behaviors of aluminum alloys [J]. Metals, 2018, 8(7): 520–540. doi: 10.3390/met8070520
    [22] CAMPBELL J D, COOPER R H. Yield and flow of low-carbon steel at medium strain rates [C]//Proceedings of the Conference on the Physical Basis of Yield and Fracture. London: Institute of Physics and Physical Society, 1966: 77–87.
    [23] JONES N. Structural impact [M]. 2nd ed. Cambridge: Cambridge University Press, 2012.
    [24] CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. doi: 10.3321/j.issn:1001-1455.2005.05.010
    [25] BAI Y, WIERZBICKI T. A comparative study of three groups of ductile fracture loci in the 3D space [J]. Engineering Fracture Mechanics, 2015, 135: 147–167. doi: 10.1016/j.engfracmech.2014.12.023
    [26] WANG P, QU S. Analysis of ductile fracture by extended unified strength theory [J]. International Journal of Plasticity, 2018, 104: 196–213. doi: 10.1016/j.ijplas.2018.02.011
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  8169
  • HTML全文浏览量:  4690
  • PDF下载量:  212
出版历程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-03-13
  • 发布日期:  2019-03-25

目录

    /

    返回文章
    返回