无机玻璃动态压缩破坏的离散元模拟

马棋棋 熊迅 郑宇轩 周风华

马棋棋, 熊迅, 郑宇轩, 周风华. 无机玻璃动态压缩破坏的离散元模拟[J]. 高压物理学报, 2019, 33(4): 044101. doi: 10.11858/gywlxb.20190719
引用本文: 马棋棋, 熊迅, 郑宇轩, 周风华. 无机玻璃动态压缩破坏的离散元模拟[J]. 高压物理学报, 2019, 33(4): 044101. doi: 10.11858/gywlxb.20190719
MA Qiqi, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Discrete Element Simulations of Dynamic Compression Failure of Inorganic Glass in SHPB Tests[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044101. doi: 10.11858/gywlxb.20190719
Citation: MA Qiqi, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Discrete Element Simulations of Dynamic Compression Failure of Inorganic Glass in SHPB Tests[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044101. doi: 10.11858/gywlxb.20190719

无机玻璃动态压缩破坏的离散元模拟

doi: 10.11858/gywlxb.20190719
基金项目: 国家自然科学基金(11390361)
详细信息
    作者简介:

    马棋棋(1993-),男,硕士研究生,主要从事冲击动力学研究. E-mail:737488513@qq.com

    通讯作者:

    郑宇轩(1986-),男,博士,副教授,主要从事冲击动力学研究. E-mail:zhengyuxuan@nbu.edu.cn

  • 中图分类号: O347

Discrete Element Simulations of Dynamic Compression Failure of Inorganic Glass in SHPB Tests

  • 摘要: 利用离散元软件PFC2D(Particle Flow Code)建立了分离式霍普金森压杆(SHPB)系统,模拟了无机玻璃圆柱和圆盘试件在冲击压缩下的动态力学行为和失效破坏模式。结果表明:无机玻璃作为典型的脆性材料,其抗压强度具有明显的应变率效应,而杨氏模量则对应变率不敏感;无机玻璃圆柱的破坏过程受纵向压力、端面摩擦力以及横向惯性力的影响,初期微裂纹呈三角状分布,随着纵向应力水平的提高,出现明显的泊松效应,产生横向张应力,致使微裂纹沿纵向扩展,最终试件发生沿轴向的劈裂断裂;摩擦系数和泊松比对试件破坏模式及强度有一定影响。将建立的SHPB数值实验平台用于模拟无机玻璃巴西圆盘试验,揭示了圆盘发生中心开裂的拉伸特征及拉伸强度的应变率相关性。

     

  • 图  SHPB离散元模型结构

    Figure  1.  Structure of discrete element model of SHPB

    图  子弹的形状和尺寸

    Figure  2.  Shape and dimensions of the projectile

    图  锥形子弹撞击速度为18 m/s时入射和透射波形

    Figure  3.  Incident and transmitted waves created by the impact of the conical projectile at 18 m/s

    图  Hopkinson杆上记录的应力波波形

    Figure  4.  Stress waves recorded on the Hopkinson bars

    图  玻璃试样中测量圆的分布

    Figure  5.  Distribution of probing circles in the glass specimen

    图  应力和应变率随应变的变化

    Figure  6.  Dependence of stress and strain rate on strain

    图  试件两侧的应力时程曲线以及内部应力不均匀系数

    Figure  7.  Temporal profile of stress on the surfaces facing the incident bar and the transmitted bar and the stress inhomogeneity coefficient

    图  试件内部应力时程曲线(${\mu = 0.1}$${\dot \varepsilon = 700\;{{\rm{s}}^{ - 1}}}$

    Figure  8.  Stress history curve of specimen (${\mu = 0.1}$${\dot \varepsilon = 700\;{{\rm{s}}^{ - 1}}}$

    图  不同时刻试件内部裂纹分布(a)和破碎形态(b)(${\mu = 0.1}$${\dot \varepsilon = 700\;{{\rm{s}}^{ - 1}}}$

    Figure  9.  Crack distributions (a) and fragmentation morphologies (b) of the specimen at different time (${\mu = 0.1}$${\dot \varepsilon = 700\;{{\rm{s}}^{ - 1}}}$

    图  10  不同应变率下无机玻璃的应力-应变曲线

    Figure  10.  Stress-strain curves of inorganic glass at different strain rates

    图  11  无摩擦时试件内部的应力时程曲线

    Figure  11.  Temporal profile of stress inside a specimen without the boundary friction

    图  12  无摩擦时试件内部的破坏模式

    Figure  12.  Evolution of internal damage process inside a specimen without the boundary friction

    图  13  ${\nu \approx 0}$ 时材料的失效破坏演化

    Figure  13.  Evolution of material failure when ${\nu \approx 0}$

    图  14  不同摩擦力和泊松比条件下试件的宏观应力时程曲线(${\dot \varepsilon}$≈700 s–1

    Figure  14.  Macroscopic stress histories of the specimen with various boundary friction and Poisson’s ratio (${\dot \varepsilon}$≈700 s–1)

    图  15  SHPB离散元模型结构

    Figure  15.  Structure of discrete element model of SHPB

    图  16  v0=9 m/s时无机玻璃动态巴西圆盘劈裂破坏过程:(a)压力时程曲线,(b)试样在各个时刻的破坏形貌

    Figure  16.  Typical Brazilian disk splitting process under dynamic loading (v0=9 m/s): (a) the pressure history; (b) failure patterns of the disk at different time

    图  17  不同冲击速度下巴西圆盘试件的加载压力时程曲线

    Figure  17.  Pressure histories of the specimens under different impact velocities

    图  18  压缩与拉伸强度的动态增强因子与应变率的关系

    Figure  18.  DIF of compressive and tensile strengths as a function of strain rate

    表  1  SHPB数值实验的离散元模型的主要微观参数

    Table  1.   Main microscopic parameters of discrete element model in numerical experiments of SHPB

    MaterialEffective modulus
    of linear contact/
    GPa
    Normal-to-shear
    stiffness ratio of
    linear contact
    Minimum radius of
    particles/mm
    Size ratio of maximum
    and minimum
    particles
    Porosity
    Steel bar1904.00.1001.50.15
    Inorganic glass 632.10.0261.50.10
    MaterialEffective modulus of
    flat-joint contact/
    GPa
    Normal-to-shear
    stiffness ratio of
    flat-joint contact
    Tensile strength of
    flat-joint contact/
    GPa
    Shear strength of
    flat-joint
    contact/GPa
    Density of
    particles/
    (kg·m–3)
    Steel bar1904.0100010008800
    Inorganic glass 632.10.0730.352444
    下载: 导出CSV

    表  2  石英玻璃宏观参数的数值模拟结果与文献数据的对比

    Table  2.   Macroscopic parameters of quartz glass: comparison of simulation results with ones published in the literatures

    MethodE/GPa${\rho _{\rm{e}}}$/(kg·m–3)${\sigma _{\rm{c}}}$/MPa${\sigma _{\rm{t}}}$/MPa${\sigma _{\rm{b}}}$/MPaKIc/(MPa·m1/2)$\nu $
    DEM simulation72.522006104767.50.960.17
    Refs.[1617]72.52200500–11004960–700.810.17
    下载: 导出CSV
  • [1] ZHANG X, ZOU Y, HAO H, et al. Laboratory test on dynamic material properties of annealed float glass [J]. International Journal of Protective Structures, 2012, 3(4): 407–430. doi: 10.1260/2041-4196.3.4.407
    [2] PERONI M, SOLOMOS G, PIZZINATO V, et al. Experimental investigation of high strain-rate behaviour of glass [C]// Applied Mechanics and Materials. Trans Tech Publications, 2011, 82: 63–68.
    [3] 王振, 张超, 王银茂, 等. 飞机风挡无机玻璃在不同应变率下的力学行为 [J]. 爆炸与冲击, 2018, 38(2): 295–301.

    WANG Z, ZHANG C, WANG Y M, et al. Mechanical behaviours of aeronautical inorganic glass at different strain rates [J]. Explosion and Shock Waves, 2018, 38(2): 295–301.
    [4] NIE X, CHEN W W, WERESZCZAK A A, et al. Effect of loading rate and surface conditions on the flexural strength of borosilicate glass [J]. Journal of the American Ceramic Society, 2009, 92(6): 1287–1295. doi: 10.1111/jace.2009.92.issue-6
    [5] NIE X, CHEN W W. Rate and surface treatment effect on the strength of boro-glass [C]//11th International Congress and Exhibition on Experimental and Applied Mechanics. Orlando, Florida: Society for Experimental Mechanics, 2008: 122–123.
    [6] NIE X, CHEN W W, SUN X, et al. Dynamic failure of borosilicate glass under compression/shear loading experiments [J]. Journal of the American Ceramic Society, 2007, 90(8): 2556–2562. doi: 10.1111/jace.2007.90.issue-8
    [7] ZHANG X, HAO H, MA G. Dynamic material model of annealed soda-lime glass [J]. International Journal of Impact Engineering, 2015, 77: 108–119. doi: 10.1016/j.ijimpeng.2014.11.016
    [8] SUN X, LIU W, CHEN W, et al. Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading [J]. International Journal of Impact Engineering, 2009, 36(2): 226–234. doi: 10.1016/j.ijimpeng.2008.01.014
    [9] 臧孟炎, 李军, 雷周. 基于DEM的两层结构夹层玻璃冲击破坏特性研究 [J]. 科学技术与工程, 2009, 9(3): 549–553. doi: 10.3969/j.issn.1671-1815.2009.03.005

    ZANG M Y, LI J, LEI Z. Study on impact fracture behavior of Bi-layer laminated glass based on DEM [J]. Science Technology and Engineering, 2009, 9(3): 549–553. doi: 10.3969/j.issn.1671-1815.2009.03.005
    [10] 臧孟炎, 雷周, 尾田十八. 汽车玻璃的静力学特性和冲击破坏现象 [J]. 机械工程学报, 2009, 45(2): 268–272.

    ZANG M Y, LEI Z, ODA J. Static characteristic and impact fracture behavior of automobile glass [J]. Journal of Mechanical Engineering, 2009, 45(2): 268–272.
    [11] CUNDALL P A. A computer model for simulating progressive, large-scale movement in blocky rock system [C]//Proceedings of the International Symposium on Rock Mechanics, 1971: 129–136.
    [12] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [13] CHEN W W, SONG B. Split Hopkinson (Kolsky) bar: design, testing and applications [M]. New York: Springer Science & Business Media, 2011: 37–49.
    [14] LI X, ZOU Y, ZHOU Z. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1693–1709. doi: 10.1007/s00603-013-0484-6
    [15] 熊迅, 李天密, 马棋棋, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 622–632.

    XIONG X, LI T M, MA Q Q, et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622–632.
    [16] 王玉芬, 刘连城. 石英玻璃 [M]. 北京: 化学工业出版社, 2007.

    WANG Y F, LIU L C. Quartz glass [M]. Beijing: Chemical Industry Press, 2007.
    [17] 王承遇, 卢琪, 陶瑛. 玻璃的脆性(一) [J]. 玻璃与搪瓷, 2011, 39(6): 37–43. doi: 10.3969/j.issn.1000-2871.2011.06.009

    WANG C Y, LU Q, TAO Y. Brittleness of glass [J]. Glass & Enamel, 2011, 39(6): 37–43. doi: 10.3969/j.issn.1000-2871.2011.06.009
    [18] 宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率 [J]. 爆炸与冲击, 2005, 5(3): 207–216. doi: 10.3321/j.issn:1001-1455.2005.03.003

    SONG L, HU S S. Stress uniformity and constant strain rate in SHPB test [J]. Explosion and Shock Waves, 2005, 5(3): 207–216. doi: 10.3321/j.issn:1001-1455.2005.03.003
    [19] 邓志方, 黄西成, 谢若泽. SHPB实验入射波形分析[C]//中国计算力学大会, 2010.

    DENG Z F, HUANG X C, XIE R Z. Analysis of incident wave in SHPB experiments [C]//Chinese Conference on Computational Mechanics, 2010.
    [20] 陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究 [J]. 爆炸与冲击, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006

    TAO J L, TIAN C J, CHEN Y Z, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB [J]. Explosion and Shock Waves, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006
    [21] SHEIKH M Z, WANG Z, DU B, et al. Static and dynamic Brazilian disk tests for mechanical characterization of annealed and chemically strengthened glass [J]. Ceramics International, 2019, 45(6): 7931–7944. doi: 10.1016/j.ceramint.2019.01.106
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  5944
  • HTML全文浏览量:  3565
  • PDF下载量:  75
出版历程
  • 收稿日期:  2019-01-22
  • 修回日期:  2019-03-07
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回