基于固有型内聚力模型模拟双层夹胶玻璃冲击断裂行为

姚蓬飞 韩阳 姚芬 李志强

姚蓬飞, 韩阳, 姚芬, 李志强. 基于固有型内聚力模型模拟双层夹胶玻璃冲击断裂行为[J]. 高压物理学报, 2019, 33(6): 064105. doi: 10.11858/gywlxb.20190718
引用本文: 姚蓬飞, 韩阳, 姚芬, 李志强. 基于固有型内聚力模型模拟双层夹胶玻璃冲击断裂行为[J]. 高压物理学报, 2019, 33(6): 064105. doi: 10.11858/gywlxb.20190718
YAO Pengfei, HAN Yang, YAO Fen, LI Zhiqiang. Simulation of the Impact Fracture Behavior of Double Laminated Glass Based on Intrinsic Cohesive Model[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064105. doi: 10.11858/gywlxb.20190718
Citation: YAO Pengfei, HAN Yang, YAO Fen, LI Zhiqiang. Simulation of the Impact Fracture Behavior of Double Laminated Glass Based on Intrinsic Cohesive Model[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064105. doi: 10.11858/gywlxb.20190718

基于固有型内聚力模型模拟双层夹胶玻璃冲击断裂行为

doi: 10.11858/gywlxb.20190718
基金项目: 国家自然科学基金(11672199)
详细信息
    作者简介:

    姚蓬飞(1993-),男,硕士研究生,主要从事冲击动力学研究. E-mail:454235864@qq.com

    通讯作者:

    李志强(1973-),男,博士,教授,主要从事冲击动力学研究. E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O347.3

Simulation of the Impact Fracture Behavior of Double Laminated Glass Based on Intrinsic Cohesive Model

  • 摘要: 为了研究双层夹胶玻璃(LG)在冲击荷载作用下的裂纹扩展规律,采用零厚度固有型内聚力单元裂纹扩展方法建立了球形锤头冲击下两边支撑的LG动力响应的计算模型,内聚力单元使用最大主应力失效准则,探讨玻璃罚刚度K值和厚度对裂纹形成路径、范围和数量以及下面板位移的影响。结果表明:(1)冲击荷载作用下,上玻璃板中心首先产生大量细小裂纹和玻璃颗粒,随后径向裂纹不断向外扩展,同时产生大量环向裂纹;(2)随着玻璃K值的增加,LG裂纹扩展范围缩小、数量减少,下玻璃板中心位移减小;(3)随着玻璃厚度的增大,LG裂纹范围缩小、数量减少,下玻璃板中心位移减小。研究结果为LG抗冲击设计和安全防护提供了直接依据。

     

  • 图  内聚力破坏过程

    Figure  1.  Cohesive failure process

    图  LG冲击破坏后的裂纹路径

    Figure  3.  Crack path of laminated glass after impact failure

    图  LG模型

    Figure  2.  Laminated glass model

    图  网格划分

    Figure  4.  Mesh generation

    图  双线性内聚力本构模型

    Figure  5.  Bilinear constitutive model of cohesion

    图  试验与仿真所得冲击力曲线对比

    Figure  6.  Comparison of impact force curve obtained from test and simulation

    图  试验与仿真所得LG裂纹对比

    Figure  7.  Comparison diagram of laminated glass crack obtained by test and simulation

    图  冲击荷载作用下LG裂纹扩展的试验结果

    Figure  8.  Experimental result of LG crack growth under impact load

    图  LG破坏机理图(左列)及其仿真结果(右列)

    Figure  9.  The failure mechanism diagram of LG (left column) and its simulation results (right column)

    图  10  LG标件在不同K值下的裂纹模态

    Figure  10.  Crack modes of LG specimens at different K values

    图  11  不同玻璃厚度的LG裂纹模态(K=500 GPa/mm)

    Figure  11.  LG crack modes with different glass thicknesses (K=500 GPa/mm)

    图  12  不同K值的LG中心位移时程曲线

    Figure  12.  LG center displacement time-history curves with different penalty stiffnesses K

    图  13  不同玻璃厚度的LG中心位移时程曲线

    Figure  13.  LG center displacement time-history curves with different thicknesses of glass layer

    表  1  各材料物性参数

    Table  1.   Physical parameters of each material

    MaterialMaterial type$\rho $/(kg·m–3)$\nu $E/GPaD1C10/MPaC01/MPa
    GlassElasticity2 5000.2 74
    ImpactorElasticity7 8500.27206
    PVBHyperelasticity1 0000.490.0121.60 0.06
    SupporterHyperelasticity1 1000.490.0230.8740.009
     Note: $\nu $ is the Poission’s ratio, D1, C10 and C01 are material parameters.
    下载: 导出CSV

    表  2  模拟工况

    Table  2.   The simulated cases

    Case No.Thickness of upper
    glass plate/mm
    Thickness of
    PVB/mm
    Thickness of lower
    glass plate/mm
    Penalty stiffness K/(GPa·mm–1)
    G110.761 500
    G220.762 500
    G330.763 500
    G440.764 500
    G550.765 500
    G660.766 500
    K120.762 500
    K220.762 750
    K320.7621 000
    K420.7621 250
    下载: 导出CSV
  • [1] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials [J]. Journal of Composite Materials, 2003, 37(16): 1415–1438. doi: 10.1177/0021998303034505
    [2] SU X, YANG Z, LIU G. Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus [J]. Acta Mechanica Solida Sinica, 2010, 23(3): 271–282. doi: 10.1016/S0894-9166(10)60030-4
    [3] XU J, LI Y. Crack analysis in PVB laminated windshield impacted by pedestrian head in traffic accident [J]. International Journal of Crashworthiness, 2009, 14(1): 63–71. doi: 10.1080/13588260802462427
    [4] PENG Y, YANG J, DECK C, et al. Finite element modeling of crash test behavior for windshield laminated glass [J]. International Journal of Impact Engineering, 2013, 57: 27–35. doi: 10.1016/j.ijimpeng.2013.01.010
    [5] CHEN S, ZANG M, XU W. A three-dimensional computational framework for impact fracture analysis of automotive laminated glass [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 72–99. doi: 10.1016/j.cma.2015.06.005
    [6] PELFRENE J, DAM S V. Numerical analysis of the peel test for characterisation of interfacial debonding in laminated glass [J]. International Journal of Adhesion & Adhesives, 2015, 62: 146–153.
    [7] GAO W, XIANG J, CHEN S, et al. Intrinsic cohesive modeling of impact fracture behavior of laminated glass [J]. Materials & Design, 2017, 127: 321–335.
    [8] RAVICHANDAR K, YANG B. On the role of microcracks in the dynamic fracture of brittle materials [J]. Journal of the Mechanics & Physics of Solids, 1997, 45(4): 535–563.
    [9] PARAMESWARAN V, SHUKLA A. Crack-tip stress fields for dynamic fracture in functionally gradient materials [J]. Mechanics of Materials, 1999, 31(9): 579–596. doi: 10.1016/S0167-6636(99)00025-3
    [10] RAHUL-KUMAR P, JAGOTA A, BENNISON S J, et al. Polymer interfacial fracture simulations using cohesive elements [J]. Acta Materialia, 1999, 47(15/16): 4161–4169.
    [11] CHEN S, ZANG M, WANG D, et al. Numerical analysis of impact failure of automotive laminated glass: a review [J]. Composites Part B: Engineering, 2017, 122: 47–60. doi: 10.1016/j.compositesb.2017.04.007
    [12] GOUTIANOS S, SØRENSEN B F. Path dependence of truss-like mixed mode cohesive laws [J]. Engineering Fracture Mechanics, 2012, 91: 117–132. doi: 10.1016/j.engfracmech.2012.02.011
    [13] BENZEGGAGH M, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439–449. doi: 10.1016/0266-3538(96)00005-X
    [14] LEE T W. The energy release rate for two-dimensional crack problems with centrifugal loads [J]. Engineering Fracture Mechanics, 1995, 51(5): 741–752. doi: 10.1016/0013-7944(94)00308-5
    [15] PELFRENE J, KUNTSCHE J, VAN DAM S, et al. Critical assessment of the post-breakage performance of blast loaded laminated glazing: experiments and simulations [J]. International Journal of Impact Engineering, 2016, 88: 61–71. doi: 10.1016/j.ijimpeng.2015.09.008
    [16] XU J, LI Y, GE D, et al. Experimental investigation on constitutive behavior of PVB under impact loading [J]. International Journal of Impact Engineering, 2011, 38(2): 106–114.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  7348
  • HTML全文浏览量:  3542
  • PDF下载量:  45
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-03-19

目录

    /

    返回文章
    返回